Multiple Choice Questions.

- 1. C.
- 2. C.
- 3. E.
- 4. D.
- 5. C.
- 6. A.
- 7. B.
- 8. B.
- 9. C.
- 10. B.
- 11. A.
- 12. D.
- 13. E.
- 14. D.
- 15. D.
- 16. B.
- 17. B.
- 18. E.
- 19. A.
- 20. C.

Full Solution.

- 1. Letting c=y-x, we are looking for the largest and smallest values of c, subject to $x^2+y^2=1$. As y=c+x, this means $x^2+(c+x)^2=1$. That is, $2x^2+2cx+c^2-1=0$. By the quadratic equation, $x=\frac{-2c\pm\sqrt{(2c)^2-4(2)(c^2-1)}}{2(2)}$. This is a real number if and only if $(2c)^2-4(2)(c^2-1)\geq 0$; that is, if and only if $-4c^2+8\geq 0$. But this means that $c^2\leq 2$. Therefore, the largest possible value of c is $a=\sqrt{2}$, and the smallest is $b=-\sqrt{2}$. The answer is $\sqrt{2}-(-\sqrt{2})=2\sqrt{2}$.
- 2. Every positive integer can be written as 3k, 3k+1 or 3k+2, for some integer k. If n=3k, then $\lfloor n^2/3 \rfloor = \lfloor 3k^2 \rfloor = 3k^2$. This cannot possibly be prime unless k=1. Indeed, k=1 does work, and n=3 is a valid solution. If n=3k+1, then $\lfloor n^2/3 \rfloor = \lfloor \frac{9k^2+6k+1}{3} \rfloor = \lfloor 3k^2+2k+\frac{1}{3} \rfloor = 3k^2+2k = k(3k+2)$. This cannot be prime unless k=1, and again, k=1 does work, since n=4 is a valid solution. Finally, suppose that n=3k+2. Then $\lfloor n^2/3 \rfloor = \lfloor \frac{9k^2+12k+4}{3} \rfloor = \lfloor 3k^2+4k+1+\frac{1}{3} \rfloor = 3k^2+4k+1 = (3k+1)(k+1)$. This is clearly not prime unless k=0, but even then, we get 1, which is not prime. Therefore, the only solutions are n=3 and 4.