## Junior Solutions - TD Canada Trust High School Mathematics Competition 2012

## Multiple Choice Questions.

- 1. B.
- 2. B.
- 3. E.
- 4. C.
- 5. C.
- 6. C.
- 7. B.
- 8. A.
- 9. A.
- 10. A.
- 11. D.
- 12. E.
- 13. A.
- 14. D.
- 15. B.
- 16. B.
- 17. D.
- 11. D.
- 18. B.
- 19. C.
- 20. A.

## Full Solution.

- 1. As  $v \ge 1$  and  $w \ge 1$ , we see that  $v + \frac{1}{w+1} > 1$ , hence  $0 < \frac{1}{v + \frac{1}{w+1}} < 1$ . Therefore, u is the integer part of 23/7, namely 3. Thus,  $\frac{1}{v + \frac{1}{w+1}} = 2/7$ , and hence  $v + \frac{1}{w+1} = 7/2$ . Since  $w \ge 1$ ,  $0 < \frac{1}{w+1} < 1$ , and hence v is the integer part of 7/2, namely 3. It now follows that  $\frac{1}{w+1} = 1/2$ , and therefore w = 1.
- 2. Since each side is nonnegative, let us square both sides. We obtain  $x^2 + 2xy + y^2 > 1 + 2xy + x^2y^2$ . Rearranging, this is  $1 x^2 y^2 x^2y^2 < 0$ . That is,  $(1 x^2)(1 y^2) < 0$ . Therefore, either  $1 x^2$  is positive and  $1 y^2$  is negative, or vice versa. But x is an integer. Therefore, if  $1 x^2$  is positive, then x = 0. Similarly, if  $1 y^2$  is positive, then y = 0. Either way, xy = 0. To see that this is indeed a valid solution, use x = 0, y = 2.