

April 25, 2012 HIGH SCHOOL MATHEMATICS COMPETITION

JUNIOR COMPETITION

Grades 9 and 10

Name:	
E-Mail:	
School & Grade:	
Telephone:	

Question #	Your Answer	For Markers Use only
1		/4
2		/4
3		/4
4		/4
5		/4
6		/4
7		/4
8		/4
9		/4
10		/4
11		/4
12		/4
13		/4
14		/4
15		/4
16		/4
17		/4
18		/4
19		/4
20		/4
	Number of	x 1
	Unanswered Questions	/80

Full Solution For Markers use (full solution):				
Question #	Mark			
1	/10			
2	/10			
Full Solution Total	/20			

Instructions for full solution questions:

- Place your solutions to these questions in this answer booklet.
- If you require additional space, use the back of the page but leave a note indicating this to the marker.

				Nam	e:			
				Schoo	ol:			
	Multiple Choice (80 Marks)							
Place	e all answers in	the multiple choic	ce boxes on the f	front page of the o	answer booklet.			
4	tions 1-20 below marks for a corr mark for a bland marks for an inc	ect answer k answer	9					
(1)	The value of 3 ²	$\cdot 9^4 \cdot 27^3$ is						
(-)		(B) 3^{19}	(C) 3^{24}	(D) 3^{144}	(E) none o	f these		
(2)	When $(1 + x^2)(1 + x^2)$	$(1+x^3)(1+x^5)(1$	$+x^7$) is expand	led, the coefficien	t of x^8 is			
		(B) 1			(E) none of these			
(3)		$= 3^{444}$ and $c = 5^2$				(E) $c < a < b$		
	$(A) \ a < b < c$	(B) $c < b <$	(C) b	< c < a	$D) \ b < a < c$	(E) C < a < 0		
(4)	(4) We have a group of 60 students, each of whom is either wearing running shoes or sandals. Given that (i) there are 12 boys wearing running shoes, (ii) there are 34 girls and (iii) there are 27 people wearing sandals, the number of girls wearing sandals is							
	(A) 0	(B) 12	(C) 13	(D) 14	(E) 21			
(5)	In how many w forwards and ba		nge three As and	d eight Bs so tha	t what we get read	ls the same		
	(A) 3	(B) 4	(C) 5	(D) 6	(E) 7			
(6)					the greatest area? 4, 27 (E) 10, 24	, 33		
(7)	7) What is the remainder when 2^{12} is divided by 7?							
(1)		(B) 1			(E) none of these			
(8)	A triangle has i	nteger side lengtl (B) 41	ns 15, u and v w (C) 45	with $uv = 105$. The (D) 53	ne perimeter of the (E) 120	triangle is		
(9)	If we multiply answer?	201220122012 by	99999999999999999,	how many times	does the digit 4 ap	pear in the		
	(A) 0	(B) 1	(C) 4	(D) 6	(E) 12			
(10)	How many poly (A) 0	rnomials $f(x)$ are (B) 1	there with integ (C) 2	ger coefficients su (D) 3	ch that $f(2) = 4$ an (E) infinitely man			

(11)	Suppose we let .	$s_1 = 4, s_2 = 8, s_3$	$_3 = 12$ and for a	$11 \ n \ge 4, \ \text{let} \ s_n =$	$=\frac{(n+2)s_{n-3}}{n-1}.$	Then s_{2012} is
	(A) $\frac{2014}{2011}$	(B) 2014	(C) 4024			(E) 6072
(12)	Consider all of tallowed, so 313 (A) 27	the three-digit nuise a valid number (B) 1332	umbers formed u er.) The sum of t (C) 1998	sing only the dig hese numbers is (D) 49		(Repetitions are(E) 5994
		\$ 650	3. W			2010-000 P. S. 600-000-0000
(13)	For any real nu instance, [3.8] =	mber x , let $\lfloor x \rfloor$ = 3.) For how m	denote the large any positive real	st integer that in numbers x is $x^{[}$	s less than $a^{x} = 11$?	or equal to x . (For
	(A) 0			(D) 3	(E) infinite	ely many
(14)	If we let $a \circ b =$	$\frac{a-b}{b}$, then $6 \circ (3$	$(\circ 2) =$			
		(B) 0		(D) 11	(E)	36
(15)	Let $s_1 = 5$. For Then s_{2012} is	each $n \geq 2$, if s_r	n_{i-1} is even, then	$s_n = \frac{s_{n-1}}{2}$. If s_n	$_{-1}$ is odd, th	$nen s_n = 3s_{n-1} + 1.$
	(A) 1	(B) 2	(C) 4	(D) 6	(E) 8	
(16)	How many of th	ne integers from	1 to 300 do not	contain the digit	3?	
	(A) 240	(B) 242	(C) 243	(D) 270	(1	E) none of these
(17)	How many pair	s of positive inte	egers (x, y) are the	here such that x_l	y - 5x - 5y =	= 1?
	(A) 0	(B) 1	(C) 2	(D) 4	(E) 5	
(18)	Violet, Wilbur, Xena, Yolanda and Zeke are considering going to a party. If Violet goes, then Wilbur will go too. Only one of Wilbur or Xena will go. Xena and Yolanda will either both go or both not go. At least one of Yolanda and Zeke will go. If Zeke goes, then both Violet and Yolanda will go. How many of these five people go to the party?					
	(A) 1			(D) 4		impossible
(19)	How many none then $8-a$ is in	empty subsets S S ?	of $\{1, 2, 3, 4, 5, 6\}$,7,8} satisfy the	following pr	coperty: if a is in S ,
	(A) 4	(B) 8	(C) 15	(D) 16	(E) 21	
(20)	Consider a regular 16-gon. How many different rectangles can we obtain by using 4 vertices from the 16-gon?					
	(A) 28	(B) 30	(C) 224	(D) 240	(E)	1820

Name:	 	-	
School:			

Full Solutions (20 Marks)

Place your solutions to these questions in the space provided. Each question is worth 10 marks.

You must show sufficient work to receive full marks, but if you do not completely answer a question you may still receive partial marks for showing work. So show your work!

1. Suppose that u, v and w are positive integers such that

$$u + \frac{1}{v + \frac{1}{w+1}} = \frac{23}{7}.$$

Find u, v and w, and explain why the values you found are the only values that work.

Name:			
School:	 		

2. Let x and y be integers such that |x+y| > |1+xy|. Find all possible values of the product xy, and explain why these are the only values possible.