




Lakehead

## April 25, 2007 LAKEHEAD UNIVERSITY HIGH SCHOOL MATHEMATICS COMPETITION

#### SENIOR INDIVIDUAL COMPETITION

Grades 11 and 12

| Name:           |  |
|-----------------|--|
| E-Mail:         |  |
| School & Grade: |  |
| Telephone:      |  |

| Question # | Your Answer             | For Markers<br>Use only |
|------------|-------------------------|-------------------------|
| 1          |                         | /3                      |
| 2          |                         | /3                      |
| 3          |                         | /3                      |
| 4          |                         | /3                      |
| 5          |                         | /3                      |
| 6          |                         | /3                      |
| 7          |                         | /3                      |
| 8          |                         | /3                      |
| 9          |                         | /3                      |
| 10         |                         | /3                      |
| 11         |                         | /4                      |
| 12         |                         | /4                      |
| 13         |                         | /4                      |
| 14         |                         | /4                      |
| 15         |                         | /4                      |
|            |                         |                         |
|            | Number of               | x 1                     |
|            | Unanswered<br>Questions | /50                     |

#### For Markers use (full solution):

| Question #             | Mark |
|------------------------|------|
| 1                      | /10  |
| 2                      | /10  |
| 3                      | /10  |
| 4                      | /10  |
| 5                      | /10  |
|                        |      |
| Full Solution<br>Total | /50  |

### Instructions for full solution questions:

- Place your solutions to these questions in this answer booklet.
- If you require additional space, use the back of the page but leave a note indicating this to the marker.

# **Senior Multiple Choice Problems:**

1. Which of these is an equation for the line passing through (2,5) and (4,11)?

(a) y = x - 3

(b) y = 2x - 1 (c) y = 4x - 3 (d)  $y = x^2 - 3x + 7$  (e) y = 3x - 1

For any positive integer n, let  $n! = n(n-1)(n-2) \dots (2)(1)$ . What is the last digit of  $1! + 2! + 3! + \dots + 50!$ ? 2.

(a) 0

(b) 3

(c) 4

(d) 5

(e) 9

Michelle was asked to add 12 to a certain number, and then divide the result by 4. Instead, she first added 4 3 and then divided by 12. She ended up with 5 as an answer. If she followed instructions correctly, what would her result have been?

(a) 5

(b) 17

(c) 20

(d) 56

(e) 60

The parabola  $y = x^2 - 10x + k$  will have its vertex located on the x-axis when  $k = \dots$ 4.

(a) - 100

(b) -25

(c) 0

(d) 25

(e) 100

5. A company estimates that the number of copies of their new DVD that they will sell, in thousands, is given by

$$\frac{3000}{2p+a}$$

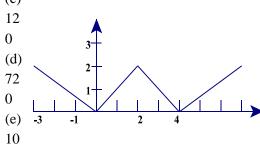
where p is the price in dollars, and a is a constant. If their estimates suggest that 100 000 copies will be sold if they charge \$10 per DVD, what would their estimate be if they charged \$20?

(a) 10 000

(b) 60 000

(c) 85 000

(d) 100 000


(e) 150 000

6, If there are ten students in a club, then the number of ways to choose a president, vice-president and treasurer (assuming that nobody gets more than one job) is

(a) 3

(b) 27

(c)



00

7. Which function is depicted below?

Name:

School:

(a) |x-2|+2 (b) |x+2|+2 (c) ||x+2|+2| (d) |x+2|-2 (e) ||x-2|-2|

| Name:  School: |                                                               |                                                              |         |  |
|----------------|---------------------------------------------------------------|--------------------------------------------------------------|---------|--|
|                | On a sheet of paper are listed the following four statements. |                                                              | Name: _ |  |
|                | On a sheet of paper are listed the following four statements. |                                                              | School: |  |
|                |                                                               | On a sheet of paper are listed the following four statements | School. |  |

How many of the statements are actually false?

This page contains exactly three false statements. This page contains exactly four false statements.

(a) none

8.

(b) 1

(c) 2

(d) 3

(e) all of them

9. A sequence is constructed so that the difference between consecutive terms is a constant. If the first four terms are x, y, 3x + y, and x + 2y + 2, find y-x.

(a) 2

(b) 3

(c) 4

(d) 5

(e) 6

10. How many solutions (x,y), with  $0 \le x \le \pi$ ,  $0 \le y \le \pi$ , are there to  $\sin(x+y) = \sin(x-y) = 0$ ?

(a) 0

(b) 2

(c) 4

(d) 5

(e) infinitely many

If a positive number x satisfies  $x^2 + \frac{1}{r^2} = 4$ , find x + 1/x. 11.

(a) 1

(b)  $\sqrt{2}$ 

(c) 2 (d)  $\sqrt{6}$ 

(e) 6

Find the smallest positive integer *n* such that  $2^{1/7}2^{3/7}...$   $2^{(2n+1)/7} > 1000$ . 12.

(a) 6

(b) 7

(c) 8

(d) 9

(e) 10

How many real solutions does the following equation have?  $x^6 - 3x^4 + 3x^2 - 1 = 0$ 13.

(a) none

(b) 1

(c) 2

(d) 6

(e) infinitely many

If we make the statement that  $|x^2 - 9| < a$  whenever |x - 3| < .1, then what is the smallest value for a that 14. will make this true?

(a) .01

(b) .1

(c).2

(d).21

(e).61

If we let  $a*b = \frac{a+b}{ab}$ , then 6\*(3\*3) = ?15.

(a) 1/2

(b) 2/3

(c) 5/3

(d) 7/3

(e) 54

| Name:   |  |  |
|---------|--|--|
|         |  |  |
| School: |  |  |

# **Senior Proof Questions:**

1. In a square ABCD, with each side having length 1, let E be the midpoint of AB, and F the intersection of DB and CE. Find the area of the triangle BEF.



| Name:   |  |
|---------|--|
| School: |  |

2. Simplify the expression  $(\log_2 3)$   $(\log_3 4)$   $(\log_4 5)$  ...  $(\log_{63} 64)$ .

| Name:   |  |  |  |
|---------|--|--|--|
| School: |  |  |  |

3. For any number x, let [x] denote the largest integer less than or equal to x, and  $\{x\} = x - [x]$ . (For example,  $\{5.7\} = 5.7 - 5 = 0.7$ .)

If 
$$y = \frac{\{\sqrt{3}\} - 2\{\sqrt{2}\}}{\{\sqrt{3}\}^2 - 2\{\sqrt{2}\}^2}$$
, find [y].

| Name:   |  |
|---------|--|
| School: |  |

4. Let n be a positive integer. Show that if  $2^n - 1$  is a prime number, then n is a prime number.

| Name: |  |
|-------|--|
|       |  |

School:

5. Find all x such that  $\sin^2(x) - \left(\sqrt{3} + \frac{1}{\sqrt{3}}\right) \sin(x) \cos(x) + \cos^2(x) = 0$ .