Introduction
The Uchi subprovince of the Superior Province (Figure 1) is unusual in that it incorporates over 300 million years of discontinuous volcanic activity. It forms a long, linear domain, well over 600 km, along the southern margin of a Mesoarchean terrane. As such it offers an excellent opportunity to evaluate the nature of continental growth processes in the Archean (Hollings & Kerrich, 1999; Percival et al. 2006), the styles of Archean plate tectonics (e.g. Wyman & Hollings, 2006) and the evolution of these processes over time. In general the older sequences have been interpreted as the result of rifting of passive margins of an older cratonic nucleus (c.f., Davis et al., 1988; Tomlinson et al., 1996), likely related to the impingement of a mantle plume on the continental lithosphere (e.g. Hollings et al., 1999) and are included within the NCT of Thurston et al. (1991). In contrast, the younger assemblages of the Uchi comprise a mix of allochthonous and autochthonous volcanic sequences (Stott & Corfu, 1991; Hollings & Kerrich, 2006).

Regional Geology
The Miminiska-Fort Hope greenstone belt is located towards the eastern end of the Uchi subprovince and has been the subject of relatively little detailed mapping or other geological studies. Based primarily on U/Pb zircon age determinations and regional correlations with the central Uchi and the Pickle Lake belt (Young 2006), we tentatively identify one portion of the northern part of the belt that could be correlated with the (~2.89 to 2.86 Ga) Pickle Crow assemblage of the Pickle Lake belt., The older assemblages comprise predominantly tholeiitic pillow basalts with rare felsic pyroclastic flows. In contrast, the
The volcanic rocks of the Fort Hope belt range in composition from basalts to rhyolites. Some mafic volcanic rocks of the St Joseph assemblage are characterised by pronounced LREE depletion (La/Sm = 0.54-0.95) comparable to modern Mid-Ocean Ridge basalts, with 143Nd/144Nd ranging from 0.83-3.03; whereas other mafic volcanic rocks of this assemblage are characterised by depleted to weakly LREE enriched primitive mantle normalized patterns and negative Nb anomalies (La/Sm = 0.56-3.63; Nb/Nb* = 0.21-0.69) with e^{147}Nd(T=2700Ma) ranging from 0.29-2.09. The intermediate to felsic volcanic rocks are characterised by LREE enrichment and negative Nb anomalies similar to modern supra-subduction sequences. The complexity of the mafic rock chemistry of the St Joseph assemblage is consistent with a backarc origin, upon which was constructed the largely pyroclastic calc-alkaline volcanic successions observed along the length of the southern edge of the Uchi domain.

Implications

Previous Hf isotopic work (Corfu & Stott, 1996), field relations (Stott & Corfu, 1991) and geochemistry (Hollings & Kerrich, 2006) in the central Uchi complement the available geochronical data for the St Joseph assemblage in the Fort Hope area. The evidence suggests that the Uchi domain was constructed largely as an episodic, parautochthonous succession of intra-oceanic arcs and backarc basins, initially composed of relatively juvenile, mantle-derived material, with evidence of progressive crustal contamination from older basement on the southern margin of the Mesaoarchean North Caribou terrane. During the circa 2700 Ma Uchian orogeny, these assemblages were telescoped and interleaved, with especially notable interleaving of the St Joseph assemblage volcanics and younger clastic sedimentary panels that form the southernmost margin of the North Caribou terrane. This collisional orogenesis was concurrent with the intrusion of large, continental arc plutons most prominently inboard from the southern margin and suggests plate tectonic processes were similar to those occurring today.

Acknowledgements

P.H. acknowledges support from an NSERC Discovery Grant.