Lecture Notes – Week 2 PART 2

STRUCTURE OF THE EARTH: SEISMOLOGY

STRESS WAVE VELOCITY

Reading: Fowler, Chapter 4.1 & 4.2 (skip 4.2.8)

Objectives:

- Continue discussion of stress waves, focusing on how fast they travel through materials
- Discuss selected geophysical applications of knowledge of wave speeds

Body waves:

Recall that stress waves are vectors, i.e. they have a magnitude and direction. 'Velocity' is the vector quantity that describes the magnitude (or *speed*) and direction.

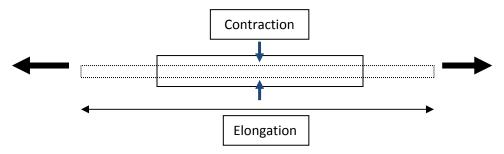
P-waves:

• P-wave speed (V_p) depends on the Young's Modulus and density of a material:

$$V_P = \sqrt{\frac{E}{\rho}}$$

- This is the one-dimensional formulation, based only on the change in length implied by Young's modulus
- Values of V_P range widely: approximately 340 m/s in air, 20-300 m/s in snow, 1500 m/s in water, 5000 m/s in granite (most rocks are between 1500 m/s and 7000 m/s)

A three-dimensional treatment of P-wave velocity requires that we consider contraction perpendicular to the elongation (i.e. a stretched bar gets thinner as it gets longer).



Poisson's Ratio = $v = Contraction/Elongation \approx 0.25$

Bulk Modulus (k) is the stiffness of a material in hydrostatic compression:

$$k = \frac{E}{3(1-2\nu)}$$

And Shear Modulus (μ) is the stiffness in shear:

$$\mu = \frac{E}{2(1+\nu)}$$

• Using Poisson's Ratio we can re-write the P-wave speed as:

$$V_P = \sqrt{\frac{k + \frac{4}{3}\mu}{\rho}}$$

• **Note:** For liquids $\mu = 0$, so

$$V_{P-liquid} = \sqrt{\frac{k}{
ho}}$$

S-waves:

• S-wave speed (V_s) depends on the shear modulus (μ) and the density of a material:

$$V_S = \sqrt{\frac{\mu}{\rho}}$$

- There is no volume change for shear waves, so no 3D treatment is required, Poisson's Ratio not required
- Note: For liquids $\mu = 0$ so $V_s = 0$ (no shear waves in liquids)

$V_P > V_S$:

• Two ways to show that P-waves are faster than shear waves:

$$\mu = \frac{E}{2(1+\nu)}$$

• Therefore E must be greater than μ

• Therefore
$$V_P = \sqrt{\frac{E}{\rho}} > V_S = \sqrt{\frac{\mu}{\rho}}$$

Or use

$$V_P = \sqrt{\frac{k + \frac{4}{3}\,\mu}{\rho}}$$

Compared to
$$V_{\scriptscriptstyle S} = \sqrt{\frac{\mu}{\rho}}$$

Where k must be greater than 0 (otherwise the material would expand when you crushed it

Therefore the $k+4/3\mu$ term must be greater than μ , which makes $V_P > V_S$

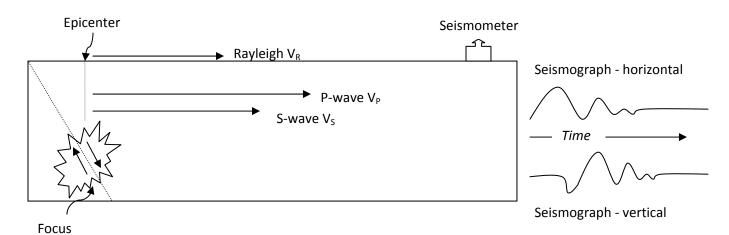
Surface Wave Speeds:

- Focus on Rayleigh Wave Speed V_R
- V_R is related to V_S by Poisson's Ratio for the material
- For most well behaved materials Poisson's Ratio is approximately 0.25, and

$$V_R \approx 0.9 V_S$$

 Note: Surface waves attenuate with distance must slower than others, so they can carry more energy further

APPLICATIONS OF WAVE SPEEDS: EARTHQUAKE ARRIVAL TIMES



 Use known differences in wave speeds to calculate location of epicenter relative to seismometer (subject to assumptions) Wave Travel time (from source) = distance/speed

Wave Arrival time (at seismometer) =

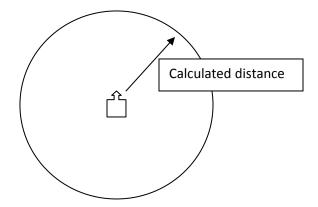
T₀ + Distance/V_P (for P-wave)

T₀ + Distance/V_s (for S-wave)

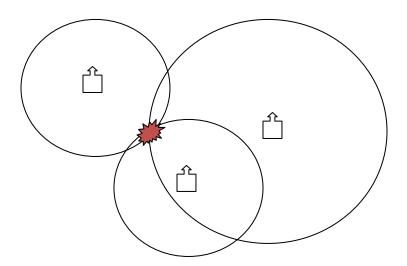
Since T₀ and Distance are the same in both,

Δ Travel Time = (Distance/V_P) - (Distance/V_S)

- Solve for Distance, and we have the distance from the epicenter to the seismometer
- But, on the earth's surface that only tells us that the epicenter is somewhere on a circle with radius of the calculated distance around the seismometer:



• If we have three or more seismometers in different locations, we can triangulate and determine the precise location of the epicenter:



- Remember that this is an oversimplified approach that treats the earth as homogenous, isotropic, and FLAT!
- Also assumes that 'source' (earthquake etc.) was at the surface
- Empirical corrections are applied to travel times and distance calculations to include these
 factors, often using waves reflected and refracted from subsurface earth layers more on this
 later

First Motion Studies:

- Also known as Push-Pull analysis
- Simplified example considers the form of the first shear displacement to arrive at the seismometer but of course this can also be done for P-wave arrival etc.

