GEOG/ENST 2232 – INTRODUCTION TO GEOMATICS AND GEOGRAPHIC INFORMATION SYSTEMS

Instructor: Dr. Muditha Heenkenda

Office location: RC 2006E

Lab Instructor: Jason Freeburn

Office location: RC 2004

Office hours: Mon -10.00 am to 12.00 pm Wed -10.00 am to 12.00 pm

Course Description:

Introduction to Geomatics and Geographic Information Systems (GIS) is an introduction to applied mapping and GIS theory and applications. Emphasis will be placed on understanding how geospatial features are represented and captured as data and how these data can be managed, analyzed and presented using state-of-the-art GIS tools. The course will also be focused on introducing basic uses of remotely sensed imagery and exploring applied mapping technologies, including Google Earth and Internet Mapping websites. Hands-on expertise will be developed with ESRI's ArcGIS desktop software.

Learning Outcomes:

Upon successful completion of this course, students will be able to:

- interpret basic remote sensing imagery data to answer questions related to natural resource management, including an assessment of accuracy and error;
- create, import, manage, explore, analyze and display geospatial data using ESRI's ArcGIS desktop software;
- apply GIS theory and concepts to answer spatial questions;
- describe the essential components and architecture of a commonly used commercial GIS software;
- create maps and reports which clearly communicate thematic information, applying basic cartographic principles to improve map layouts;
- identify and compare different GIS data models, and convert between vector data models as needed; and
- identify and compare coordinate system and datum used in geographic data, set and convert spatial reference systems, and correctly utilize project-on-the-fly to represent your data on a map layout.

Teaching and Learning approach:

The course will include a mix of theory, discussion, demonstration, guided application, and independent lab time. Quizzes will consist of practical and theory aspects.

Learning Resources:

Required: Chang, Kang-tsung. 2019. Introduction to Geographic Information Systems (9th edition). McGraw Hill Education.

Available for a 6 month rental period:

 $\underline{https://www.mheducation.com/highered/product/introduction-geographic-information-systems-chang/M9781259929649.html}$

Hardware requirements:

Lab exercises are based on ESRI ArcGIS software. The university will provide ArcGIS software (Student licenses) for the one years' period and students should have access to one of the following WINDOWS OPERATING SYSTEMS to install the software;

- Windows 10 Home, Professional, Enterprise, and Educational (64 bit [EM64T])
- Windows 8.1 Basic, Pro, and Enterprise (64 bit [EM64T])
- Windows 7 SP1 Ultimate, Enterprise, Professional, and Home Premium (64 bit [EM64T])

Check this link for hardware requirements: https://doc.arcgis.com/en/arcgis-earth/get-started/system-requirement.htm

Assessment:Task 1: Lab exercises45%Task 2: Individual/group online discussions10%Task 3: Quizzes5%Task 4: Two midterm exams20%Task 5: Final exam15%Task 6: GIS Data/File management strategy5%

Course Expectations/Student Responsibilities:

- 1. **Attendance** is expected for each online lecture and lab unless communicated with the instructor ahead of time. At the end of each lecture, there will be a quiz worth 5% of total course marks.
- 2. Late Assignments receive a deduction of 10% per day unless an extension is agreed to with the instructor prior to the due date. After class assignments are graded and returned, late assignments receive a zero grade but must be satisfactorily completed to receive credit in the course.
- 3. **Participation** is expected in all class discussions, group work and collaborative efforts.
- 4. **Exams** (a) absences from illness, compassionate reasons or representing the university off-campus, supported by written documentation will be accepted as sufficient evidence to allow a rewrite of a missed test.
 - (b) If you miss an exam for any reason other than those deemed acceptable in Lakehead University calendar, then you will be given the opportunity of an essay-based makeup exam that is significantly longer and more difficult.

Course Schedule:

			T	Reading
Week	Monday	Wednesday	Lab exercise (Monday)	schedule
Sept 7	No class (Labor Day)	Introduction to the	No lab (Labor Day)	Chapter 1
Берг	Tto class (Eacor Bay)	Course and GIS	Tro has (Easer Bay)	Chapter 1
14	GIS Data management	Intro to GIS Theory,	Lab1: Exploring various web	Chapter 1
	Internet Map Services	terms and concepts	mapping applications and	
	(IMS)		geospatial data sources	
			Create a data management	
21	Internal and CIC 1-1-	Tutus desettes to	plan for the course	Cl
21	Introduction to GIS data models and software:	Introduction to Remote Sensing –	Lab 2: GIS file management, introduction to ArcMap and	Chapter 3 & 4
	ArcGIS & ArcCatalog –	aerial photographs,	ArcCatalog	α 4
	terms and interfaces,	satellite images	Thecatalog	
	GIS file management	Saccinice initiages		
28	Raster data model,	Spatial reference	Lab 3: Working with raster	Chapter
	image interpretation,	systems	data and image interpretation	2& 4
	raster data catalogues			
Oct 5	Introduction to	Midterm test 1	Lab 4: Datums, map	Chapter 2
	Cartography, basic map		projections and coordinate	& 9
	elements, create a		systems	
12	simple map		z (no classes)	
12	Georeferencing raster	GIS Data capture	Lab 5: Georeference an	Chapter 5
	images	and working with	image, add vector data and	& 6
		tabular data	create a simple map	
19	Introduction to GPS-	Data exploration –	Lab 6: Working with	Chapter 5
	GIS/GPS integration	joins and relates	GIS/GPS data – on screen	& 10
			digitizing, editing, map	
26	D 1 1	X7 . 1 .	making	G1 . 7
26	Data exploration –	Vector and raster	Lab 7: Joins and relates,	Chapter 7
	select by attributes, select by location etc.	data display – qualitative and	attribute queries, summery tables	
	select by location etc.	quantitative	tables	
Nov. 2	Spatial data quality and	Midterm test 2	Lab 8: Qualitative and	Chapter 9
1,0,,2	spatial analysis	1/11/10/01/11/10/05/1	quantitative data display	& 10
			methods	
9	Spatial analysis tools –	Raster data analysis	Lab 9: Spatial data analysis	Chapter 8
	overlay, buffer, intersect	– simple operations	(GIS case study)	
		(extract, resample)		
16	Raster data analysis -	Mobile data	Lab 10: Raster data analysis	Chapter
22	interpolation	acquisition	for problem solving	12
23	Lab 11: Mobile data	Mapping/publishing	Lab 11: Mobile data capture	Chapter
20	capture using GIS apps	captured data Final exam Review	using GIS apps Final even (lab even)	11
30	Mapping/publishing captured data	rmai exam Keview	Final exam (lab exam)	
	captureu uata			

Note that this document is subjected to change pending unforeseen circumstances.