

Atmospheric Stability

GEOG/ENST 2331 – Lecture 9 Ahrens: Chapter 6

Last lecture

- Hydrologic cycle
- Humidity
- Diabatic: convection, conduction, radiation; mixing
- Adiabatic: change in T but no exchange of heat

Is dry air lighter than humid/moist air?

- Nitrogen + oxygen = 99 % of atmosphere
- Molecular weight
- $N_2 = 14x^2 = 28$
- $O_2 = 16x2 = 32$

- Molecular weight
- $H_2 = 1x^2 = 2$
- O = 16x1 = 16
- Molecular weight = 18

Much lighter than displaced N_2 and O_2 when H_2O evaporates into air!

Dry Adiabatic Lapse Rate (DALR)

Air warms or cools at 1° C / 100 m Ahrens: Active Fig. 6.2

Environmental lapse rate

- The rate at which temperatures decrease with height
- Troposphere *average*:
 6.5°C / km
- A measurement of physical conditions

ELR: Example

- DALR: 10°C/km
 ELR: 4°C/km
- What will happen to the parcel next?

Ahrens: Active Fig. 6.3a

Lapse rate as a forecasting tool

20 ° C

- Summer/winter examples
- The surface maximum Temperature (T) can be estimated by "taking" the 850-mb T down to the surface.
- 7° C at 1500 m + 13 = 20° C
 (TBay is about 200 m above sea level)

Winter?

Atmospheric stability

Stable – resists vertical movement

- A parcel lifted in this condition will be pushed back to its original level
- Unstable supports vertical movement
 A parcel lifted in this condition will continue to rise
- Neutral no effect on vertical movement

Instability

- DALR: 10°C / km
 ELR: 11°C / km
- What will happen to the parcel next?

Ahrens: Active Fig. 6.7a

Atmospheric stability

- Stable ELR less than DALR
 ELR < 10°C/km
- Unstable ELR greater than DALR ELR > 10°C/km
- Neutral no effect on vertical movement
 ELR = 10°C/km

Weather balloons

Potential Temperature

- The temperature the environmental air would be at 1000 hPa (surface)
 - The air at 1000 m has a potential *T* of 29°C
 - The air at 2000 m has a potential *T* of 28°C
- If the *potential T* is decreasing then the air is
- Theta (θ) used for potential temperature.

Ahrens: Fig. 6.7a

Saturated air

Air temperature is equal to the dew point temperature

If the air is cooled then the dew point temperature must decrease as well

If a parcel of saturated air rises, what happens?

Saturated adiabatic lapse rate

SALR

- Approximately 6°C/km
- Adiabatic cooling is offset by release of latent heat

Dependent on T and P

🛚 Lab 4

PRESSURE (hPa)	TEMPERATURE (°C)					
	-40	-20	0	20	40	
1000	9.5	8.6	6.4	4.3	3.0	
800	9.4	8.3	6.0	3.9		
600	9.3	7.9	5.4			
400	9.1	7.3				
200	8.6					

Ahrens: Table 6.1

Conditional instability

ELR = 7° C/km DALR = 10° C/km SALR = 6° C/km Ahrens: Active Fig. 6.8 Stability categories Absolute stability Absolute instability Conditional instability Neutral stability

Atmospheric stability

- Absolutely Stable
 - ELR < 6°C/km</p>
- Conditionally Unstable
 - B 6°C/km < ELR < 10°C/km</p>
- Absolutely unstable
 - ELR > 10°C/km
- Conditionally Neutral
 - **ELR** = 10° C/km or ELR = 6° C/km

Lifting and saturation

Remember

- Saturation vapour pressure (SVP) is dependent on temperature
- As temperature goes down, SVP goes down

🍄 Also

- SVP is dependent on pressure
- As pressure goes down, SVP goes up

Lifting and saturation

- Two effects counter each other, but do not cancel out
 - Change from T larger than change from P
 - When a parcel rises, its dew point temperature goes down
 - Dew point lapse rate is roughly 2°C/km
- Therefore a rising unsaturated parcel will eventually become saturated

Varies with moisture content

DALR is 10°C / km Eventually it will catch up

Lifting Condensation Level (LCL)

$$h = \frac{1000 \text{m}}{8^{\circ} \text{C}} (T - T_d) = 125 (T - T_d)$$

where h is the height of saturation in metres above the reference point

Above *h* the parcel is saturated and cools at SALR
When the air is saturated DPLR = SALR

Saturation due to adiabatic cooling

LCL at $h = 125(7-T_d) = 125(0.8) = 100 \text{ m}$ A&B: Figure 6.8

Level of free convection (LFC)

Conditional stability

- Dry air must be forced upward
- Becomes saturated at LCL
- Past the LFC, parcel rises on its own

Atmospheric stability

- Atmospheric stability
- Saturation

Lifting mechanisms

- Orographic uplift
- Frontal lifting
- Convergence
- **Convection**
- Chinook winds

(b) Lifting along topography

Ahrens: Fig. 6.15b

Sierra Nevada Range

Convection

Ahrens: Fig. 6.15a

Convergence

- Surface air converges at regions of low pressure
- Causes rising air

Ahrens: Fig. 6.15c

Frontal lifting

Fronts: transition zones with strong temperature gradients

- Large density difference
- Denser air forces up lighter air

Lecture outline

- Atmospheric stability
- Saturation
- Lifting mechanisms
- Chinook winds

Chinook winds

Ahrens: Active Fig. 6.22

Foehn wind

Wind on the lee side of mountains

- Chinook (North American term)
- 🛚 Zonda (Argentina)
- Aspre (France)
- Foehn (Switzerland)
- 🛚 Sky sweeper (Spain)

Which way is the chinook blowing and why?

Coming up

Next lecture

Clouds and precipitationAhrens: Chapters 6 and 7