

Moisture in the Atmosphere

GEOG/ENST 2331 – Lecture 8 Ahrens: Chapter 4

Last lecture

- Atmospheric mechanics
 - PGF, gravity, Coriolis effect, friction
- Geostrophic winds
- Cyclones and anticyclones

Moisture in the Atmosphere

- Hydrologic cycle
 - Changes of phase
- Humidity
- Adiabatic processes
- Humidity and comfort

Hydrologic Cycle

Ahrens: Figure 4.1

Phases of water

Ahrens: Fig. 4.3

Changes of phase

- Evaporation
 - Liquid molecules break free to become gaseous
 - Surrounding material becomes cooler
- Condensation
 - Gaseous molecules pull together to form a liquid
 - Surrounding material becomes warmer

Saturation and equilibrium

- Water exposed to a gas (or vacuum) will evaporate into it
- Water vapour will bond together and condense
- Saturation is the point at which the evaporation and condensation rates are equal

More changes of phase

- Freezing
- Melting
- Sublimation
 - Solid to gas
- Deposition
 - Gas to solid
 - Sometimes *also* called sublimation

Ahrens: Figure 2.1

Water vapour indices

- Absolute Humidity
 - Indicates the density of water vapor expressed as a concentration (typically g/m³)
- Specific Humidity
 - Represents a given mass of water vapor per mass of air as a ratio (typically g/kg)
- Vapour pressure
 - The amount of pressure exerted by water molecules in the air (typically mb or hPa)
 - Also called the partial pressure of water vapour

Saturation vapour pressure

- Water vapor pressure at equilibrium
- Dependent on temperature and pressure
- Increases non-linearly with temperature
- Similar to *saturation* specific humidity

Ahrens: Active Fig. 4.10

Relative Humidity

Indicates the amount of water vapour in the air relative to the saturation point

$$RH = \frac{\text{Vapour pressure}}{\text{Saturation vapour pressure}}$$

$$= \frac{\text{Specific humidity}}{\text{Saturation specific humidity}}$$

Dependent on specific humidity, temperature, and pressure

(a) **An increase in water vapour content** with no change in temperature increases the RH. Consequently, RH moves closer to saturation.

(b) **An increase in temperature** with no change in water vapour content decreases the RH. Consequently, RH moves further from saturation.

Ahrens: Active Fig. 4.11

Dew point temperature

- Another index of moisture (not temperature)
 - Temperature at which the vapour pressure **would** equal the saturation vapour pressure
 - High vapour pressure means high dew point
- If the air cools to this temperature, it will become saturated
 - If $T = T_d$ then RH = 100%

Dew Point Temperature

A&B: Figure 5-9

Methods of Achieving Saturation

Cool the air to the dew point

- Add water vapour to the air
- Mix cold air with warm air
 - If the warm air has higher specific humidity

Achieving saturation

A&B: Figure 5-9

- At night the ground cools quickly
 - Emission of IR

- Air above the ground cools due to conduction
 - Reaches dew point temperature
 - Condensation begins

Frost

- Like dew, but with a dew point temperature below 0°C (frost point temperature)
 - Deposition into ice crystals rather than condensation
- * Frozen dew: dew point is above 0°C, but temperature drops below after condensation

Temperature change

- Diabatic process: adds or removes energy from a system
 - Heat transfers

Adiabatic process: changes temperature without adding or removing heat

Diabatic processes

- Mixing
- Advection
 - Warm, moist air moves over a cool surface
- Radiation
 - Night-time cooling

Adiabatic processes

- Changes in pressure cause changes in temperature
 - If the pressure drops, a parcel of air will expand and cool down
 - If the pressure rises, a parcel of air will be compressed and warm up

What is a 'parcel' of air?

- A volume of air with distinct properties
- No fixed dimensions or shape
- Creates a mental picture for visualizing atmospheric conditions
- Visualize a cubic metre of air a blob of air

Dry adiabatic cooling

Parcels expand and cool at the *dry adiabatic lapse rate* of 1°C/100 m (10°C/km)

A&B: Figure 5-15

Adiabatic warming

Descending air warms at exactly the same rate Ahrens: Figure 6.2

Lecture outline

- Hydrologic cycle
- Humidity
- Adiabatic processes
- Humidity and comfort
 - Humidex

It is not the heat, it is... the Humidity

- 'Dry heat'
 - Sweat evaporates readily
 - Body cools down easily
- High humidity
 - Sweat does not evaporate
 - Body cannot shed heat

Even when it is cold?

- 'Dry cold'
 - Sweat evaporates readily
 - But the body does not sweat much
- High humidity
 - Sweat condenses in clothing
 - Damp clothing provides much less insulation

Humidex

	Relative Humidity (%)																	
		20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
Temperature (°C)	50	59																
	48	56	59															
	46	52	55	58														
	44	49	52	54	57	60												
	42	46	48	51	53	56	58	60										
	40	43	45	47	49	52	54	56	58	60								
	38	40	42	44	46	48	50	52	53	55	57	59						
	36	37	39	41	42	44	46	48	49	51	53	54	56	58	59			
	34	35	36	38	39	41	42	44	45	47	48	50	51	53	54	56	57	59
	32	32	33	35	36	37	39	40	41	43	44	45	47	48	50	51	52	54
	30		30	32	33	34	35	37	38	39	40	41	43	44	45	46	47	49
	28		28	29	30	31	32	33	34	35	36	37	39	40	41	42	43	44
	26			26	27	28	29	30	31	32	33	34	35	36	37	38	39	39
	24				24	25	26	27	28	29	29	30	31	32	33	34	34	35
	22				22	22	23	24	25	25	26	27	28	28	29	30	31	31
	20					20	20	21	22	22	23	24	24	25	26	26	27	28

Ahrens: Fig. 4.19

Summary

- Three important humidity indices:
 - Vapour pressure, relative humidity, dew point temperature
- Adiabatic processes
 - Rising air expands and cools
 - Sinking air is compressed and warms
- Humidex
 - Interesting but not so important

Coming up

- Atmospheric stability
- Saturated lapse rates
- Ahrens: Chapter 6