Pressure Gradients

GEOG/ENST 2331 - Lecture 6 Ahrens: Chapter 8 Lab 2

Mechanics: $F=m a$
What exerts force in the atmosphere?
a Pressure gradients
m Gravity
a Coriolis effect
m Friction

Review: Pressure
*) Atmospheric pressure is force per unit area exerted by atmospheric gases (all directions)
4. Commonly expressed in millibars or hectopascals
\& $1 \mathbf{h P a}=100 \mathrm{~Pa}=1 \mathrm{mb}$
(3) Surface pressure is close to 1000 hPa
${ }_{c}$ Varies with time and place

Surface Analysis 06Z Jan 19

Public Weather Alerts for Canada

* Pressure, density and temperature of air are related by the Ideal Gas Law:
m C is the gas constant
a For air, C=287 [J/kg.K]
* See Ahrens pp. 216-217

A\&B: Figure 4-1

Ideal Gas Law

$$
P=\rho T C
$$

Partial Pressures

- In a mixture of gases, each individual gas exerts its own partial pressure
as.g. pCO_{2} or $\mathrm{pH}_{2} \mathrm{O}$
*- Dalton's Law: the sum of the partial pressures equals the total pressure

Charting pressure

* Isobars - lines of constant pressure
* Pressure Gradient - the change in pressure over distance
a Zonal
Meridional
mor Vertical

Blocking situations

Pressure gradient force

TANK A

3. Tendency for fluids to flow from high pressure to low pressure

Ahrens: Fig. 8.17

Horizontal pressure gradient force

Horizontal pressure differences are usually slight.

Strong pressure gradients indicate strong winds and storms.

Ahrens: Fig. 8.18

$$
\mathrm{PGF}=-\frac{1}{\rho} \frac{\Delta P}{\Delta x}
$$

PGF

PGF is always

 perpendicular to isobarsClosely spaced isobars indicate stronger PGF

Ahrens: Fig. 8.19

Vertical Changes in Pressure

- Pressure decreases with height
* Exponential: roughly 50% every 5.5 km

A\&B: Figures 4-2 and 4-3

Coordinate system
Cartesian system (x, y)
x - zonal (East/West) direction - East is positive y - meridional (North/South) direction - North is positive
z - vertical - up is positive
u - velocity in the x direction
v - velocity in the y direction

Gravitational force
*) Force of attraction between two masses

- Earth approximation:

GF $=m g, g=9.8 \mathrm{~N} / \mathrm{kg}$

- Vertical force (always pulls 'down')

Hydrostatic Balance

A vertical balance of forces

- Pressure gradient force and gravity are equal
- No net vertical acceleration

$$
\Delta P=-\rho g \Delta z
$$

Higher pressure

Ahrens: Fig. 8 p. 237

Vertical pressure gradients

Pressure always decreases with height
Vertical pressure gradients are balanced by gravity

$$
\begin{aligned}
& P=\rho C T \\
& \Delta P=-\rho g \Delta z
\end{aligned}
$$

Scale height, H, is a vertical distance over which the pressure drops by a constant factor
T is the average temperature in the column of height H

Scale Height

- If T is large, then H is large and the pressure reduces more slowly with height.
If T is small the opposite is true.
*) For example, the tropopause occurs at 250 hPa . The height of the tropopause is 8 km at the poles and 18 km at the equator.
$\%$ This is consistent with the scale height analysis

$$
H=\frac{C T}{g}
$$

Temperature and scale height

A\&B: Figure 4-7

Upper air

Height of constant pressure decreases with temperature

Ahrens: Figure 8.13

Altimeters

Ahrens: Fig. 3, p. 223

Constant altitude surfaces

Ahrens: Figure 8.14

Isobaric charts

(a) Surface map

Pressure (in hPa)

(b) Upper-air map $(500 \mathrm{hPa})$

500 hPa height contours (in m).

Ahrens: Figure 8.16b

Elongated zones of high and low pressure are called ridges (a) and troughs (b), respectively.

A\&B: Figure 4-20

Atmospheric Pressure Examples

Surface of

 constant pressure

Ahrens: Figure 8.15

Put the air in motion

* Horizontal pressure gradients cause the air to move
- The Earth's surface is a spinning frame of reference
*) Push an object within that reference and it will not appear to travel in a straight line

The Coriolis Effect

Apparent path as seen by observer on rotating platform

Platform A
(nonrotating)

Ahrens: Fig. 8.21

Next lecture

* Coriolis "force"
- Geostrophic winds
- Cyclones and anticyclones
- More of Ahrens et al., Chapter 8

