

Pressure Gradients

GEOG/ENST 2331 – Lecture 6 Ahrens: Chapter 8 Lab 2

Mechanics: F = ma

What exerts force in the atmosphere?

- Pressure gradients
- 🛚 Gravity
- Coriolis effect
- Friction

Review: Pressure

- Atmospheric pressure is force per unit area exerted by atmospheric gases (all directions)
- Commonly expressed in *millibars* or *hectopascals 1 hPa = 100 Pa = 1 mb*
- Surface pressure is close to 1000 hPa
 Varies with time and place

Public Weather Alerts for Canada

Ideal Gas Law

 Pressure, density and temperature of air are related by the Ideal Gas Law:

 $P = \rho T C$

- C is the gas constant For air, $C = 287 [J/kg \cdot K]$
- See Ahrens pp. 216-217

Partial Pressures

 In a mixture of gases, each individual gas exerts its own *partial pressure* E.g. pCO₂ or pH₂O

Dalton's Law: the sum of the partial pressures equals the total pressure

Charting pressure

- Isobars lines of constant pressure
- Pressure Gradient the change in pressure over distance
 - 🛚 Zonal
 - Meridional
 - or Vertical
 - Blocking situations

Pressure gradient force

 Tendency for fluids to flow from high pressure to low pressure

Ahrens: Fig. 8.17

Horizontal pressure gradient force

Horizontal pressure differences are usually slight.

Strong pressure gradients indicate strong winds and storms.

Ahrens: Fig. 8.18

$$PGF = -\frac{1}{\rho} \frac{\Delta P}{\Delta x}$$

PGF

PGF is always perpendicular to isobars

Closely spaced isobars 1016 indicate stronger PGF 1020 PGF 1024 Ahrens: Fig. 8.19 MAP VIEW PGF H PGF PGF 200 400 600 0 Scale (km)

Vertical Changes in Pressure

- Pressure decreases with height
- Exponential: roughly 50% every 5.5 km

Mt. Everest

300

700

900

500

Pressure (mb)

n

100

Coordinate system

Cartesian system (x, y)

- x zonal (East/West) direction East is positive
- y meridional (North/South) direction North is positive
- z vertical up is positive
- *u* velocity in the x direction
- v velocity in the y direction

Gravitational force

Force of attraction between two masses

Earth approximation:

Vertical force (always pulls 'down')

Hydrostatic Balance

- A vertical balance of forces
- Pressure gradient force and gravity are equal
- No net vertical acceleration

$$\Delta P = -\rho g \Delta z$$

Ahrens: Fig. 8 p. 237

Vertical pressure gradients

Pressure always decreases with height Vertical pressure gradients are balanced by gravity

Scale height, H, is a vertical distance over which the pressure drops by a constant factor

T is the average temperature in the column of height *H*

$$P = \rho CT$$

$$\Delta P = -\rho g \Delta z$$

$$H = \frac{CT}{g}$$

Scale Height

- If T is large, then H is large and the pressure reduces more slowly with height.
 - If *T* is small the opposite is true.
- For example, the tropopause occurs at 250 hPa. The height of the tropopause is 8 km at the poles and 18 km at the equator.

This is consistent with the scale height analysis H - CT

Temperature and scale height

© 2010 Pearson Education, Inc.

A&B: Figure 4-7

Upper air

Height of constant pressure decreases with temperature

Ahrens: Figure 8.13

Altimeters

Ahrens: Fig. 3, p. 223

Ahrens: Figure 8.14

Isobaric charts

5340 5400 5400 -25 5460 5340 5460 5520 5460 UH. -20 5580 - 5520 T U 5- 5580 5640 -15 Ť .5640 5700-H - 5700

(a) Surface map

Pressure (in hPa)

(b) Upper-air map (500 hPa)

500 hPa height contours (in m).

Ahrens: Figure 8.16b

Elongated zones of high and low pressure are called ridges (a) and troughs (b), respectively.

A&B: Figure 4-20

Atmospheric Pressure Examples

mm Hg in Hg	-	hPa		
832.6 - 32.78 -	-	- 1110		E1002.9 hDet Liebest recorded and level pressure. Agets
825.1 - 32.48 -		- 1100		Siboria, appropriated with the Siborian High that forms over
817.6 - 32.19 -		- 1090		northern continental Siberia during dark frigid winters
810.1 - 31.89 -		- 1080	*	December 31, 1968.
802.6 - 31.60 -		- 1070		1079.6 hPa: Highest recorded Canadian sea-level pressure:
795.1 - 31.30 -		- 1060		Dawson, Yukon Territory. February 2, 1989.
787.6 - 31.00 -		- 1050		
780.1 - 30.71 -		- 1040	4	Strong high-pressure system
772.6 - 30.42 -		- 1030		
765.1 - 30.12 -		- 1020		
757.6 - 29.82 -		- 1010	-	1013.25 hPa Standard
750.1 - 29.53 -		- 1000		sea-level pressure
742.6 - 29.24 -		- 990		
735.1 - 28.94 -		- 980	-	Deep low-pressure system
727.6 - 28.64 -		- 970		
720.1 - 28.35 -		- 960		
712.6 - 28.05 -		- 950		
705.1 - 27.76 -		- 940	-	940.2 hPa: Lowest recorded Canadian sea-level pressure:
697.6 - 27.46 -		- 930		St. Anthony, Newfoundland. January 20,1977.
690.1 - 27.17 -		- 920	-	920 hPa: Hurricane Katrina during landfall. Buras,
682.6 - 26.87 -		- 910		Louisiana, USA. August 28, 2005.
675.1 - 26.58 -		- 900		
667.6 - 26.28 -		- 890	-	882 hPa (26.04 in.) Hurricane Wilma
660.1 - 25.99 -		- 880		(October, 2005)
652.6 - 25.69 -		- 870	*	870.0 hPa: Lowest recorded sea-level pressure: In eye of
645.1 - 25.40 -		- 860		Super Typhoon Tip, Pacific Ocean, 17°N, 138°E (between Guam
637.6 - 25.10 -		- 850		and the Philippines). October 12, 1979.

Ahrens: Figure 8.15

Put the air in motion

- Horizontal pressure gradients cause the air to move
- The Earth's surface is a spinning frame of reference
- Push an object within that reference and it will not appear to travel in a straight line

The Coriolis Effect

Ahrens: Fig. 8.21

Next lecture

- Coriolis "force"
- Geostrophic winds
- Cyclones and anticyclones
- More of Ahrens et al., Chapter 8