

Temperature and Geography

Lecture 5 Ahrens, Chapter 3

Temperature: History and Applications

Origin of temperature scales: More on 2331 site

- Galileo Galilei invented a rudimentary water thermoscope in 1593
- Fahrenheit Scale
- Kelvin Scale in 1848
- Celsius
- History: Review text:
 pages 62 63 or 34 35

Temperature

- Profile in the atmosphere
- Today: begin with Latent heat
- Transfer of heat
- Sometimes reduced temperature! Frost, wind chill
- Heating degree days

Isotherms

Latent heat

Energy required to change the state of a substance

Liquid to gas: heat of evaporation

- Solid to liquid: heat of fusion
- Heat is 'hidden'
 - No change in temperature

Thermal Storage and phase change

Latent heat

Liquid to gas
Absorbs heat (at the surface)
Gas to liquid
Releases heat (in the atmosphere)

Radiative, convective and latent transfers

Geographic controls of temperature

Latitude

- Land and water distribution
- Ocean currents

Elevation

Diurnal heat budget

A&B: Figure 3-23

Cloudy days

A&B: Figure 3-23

Diurnal surface air temperature

Ahrens: Fig. 3.14

PRINCIPLES OF FROST

Daytime heating

Overnight cooling

PRINCIPLES OF FROST

Sample temperature profile during an inversion

Beam spreading

- A beam of sunlight spread over a large area is less intense
- Higher latitudes receive less solar energy per unit area
- Also passes through more air

Ahrens: Fig. 3.7

Net radiation vs. latitude

- Net energy gain
 38°N-38°S
 Migrates seasonally
- Energy difference creates winds and currents

A&B: Figure 3-16

Ocean currents

Altitude and temperature

A: 0 m B: 3000 m C: 3000 m

Altitude

Specific heat

How much energy does it take to raise the temperature of a substance by 1 degree?

Material	J/kg°C
Water	4186
Granite	790
Soil	800
Wood	1700
Air	1012

Land/sea contrast

Water has higher specific heat than soil or rocks

Water experiences greater evaporative cooling

Water allows more horizontal and vertical mixing

Impact on air temperatures

- Water surfaces change temperature more slowly than land given similar insolation.
 - Temperature ranges are smaller
 - Seasonal temperature lags are longer
- Continentality is the exacerbation of seasonal temperature extremes experienced by continental interiors

Coastal Climates

Same latitude Same average *T*

Vegetation

Vegetation reduces surface warming during the day and reduces radiation at night

A&B: Figure 3-21

Topography South-facing slopes are typically more vegetated than north-facing slopes.

Geography and temperature

- Latitude
- Altitude
- General circulation
- Continentality
- Vegetation
- Topography

Temperature distribution

Isotherm

- A line of constant temperature
- Used to create contour plots
- Everywhere between two contours, temperature is between those two values

Will see several more types of 'iso-line' (isopleth)

Average January surface air temperature

Ahrens: Figure 3-19

Average June surface air temperature

Ahrens: Figure 3-19

Difference in July/January Temperatures

A&B: Fig. 3-18

Heating Degree-Days

- A seasonal total representing the demand for home heating
- For each day in the season:
 - Start with 18C°
 - Subtract that day's mean temperature
 - If the result is larger than zero, add it to the total
- Example: daily mean temperatures for five days
 - 🛚 18, 17, 19, 12, 10°C
 - 0 + 1 + 0 + 6 + 8
 - Total of 15 heating degree-days

Heating Degree-Days

Ahrens: Fig. 3.24

Wind Chill

How cold does it feel?

- Combination of temperature and wind speed
- Wind does not reduce the temperature but it
 does increase the heat loss
- Changes the skin's epiclimate

Wind Chill and Epiclimate

An *epiclimate* is a very small scale climate surrounding an object

A small insulating layer near the skin Air is a good insulator (poor conductor) Heat transfer by molecular diffusion

Wind disrupts the epiclimate

Wind Chill Calculation Chart

/T air (°C)	5	0	-5	-10	-15	-20	-25	-30	-35	-40	-45	-50
V ₁₀ (km/h)	-		1.1.	1		0		_			-	
5	4	-2	-7	-13	-19	-24	-30	-36	-41	-47	-53	-58
10	З	-3	-9	-15	-21	-27	-33	-39	-45	-51	-57	-60
15	2	-4	-11	-17	-23	-29	-35	-41	-48	-54	-60	-66
20	1	-5	-12	-18	-24	-31	-37	-43	-49	-56	-62	-68
25	1	-6	-12	-19	-25	-32	-38	-45	-51	-57	-64	-70
30	0	-7	-13	-20	-26	-33	-39	-46	-52	-59	-65	-72
35	0	-7	-14	-20	-27	-33	-40	-47	-53	-60	-66	-73
40	-1	-7	-14	-21	-27	-34	-41	-48	-54	-61	-68	-74
45	-1	-8	-15	-21	-28	-35	-42	-48	-55	-62	-69	-75
50	-1	-8	-15	-22	-29	-35	-42	-49	-56	-63	-70	-76
55	-2	-9	-15	-22	-29	-36	-43	-50	-57	-63	-70	-77
60	-2	-9	-16	-23	-30	-37	-43	-50	-57	-64	-71	-78
65	-2	-9	-16	-23	-30	-37	-44	-51	-58	-65	-72	-79
70	-2	-9	-16	-23	-30	-37	-44	-51	-59	-66	-73	-80
75	-3	-10	-17	-24	-31	-38	-45	-52	-59	-66	-73	-80
80	-3	-10	-17	-24	-31	-38	-45	-52	-60	-67	-74	-81

where Tair = Actual air temperature in °C

V₁₀ = Wind speed at 10 metres in km/h (as reported in weather observations)

Approximate Thresholds:

Risk of frostbite in prolonged exposure: windchill below

Frostbite possible in 10 minutes at

Frostbite possible in less than 2 minutes at

-35 \ 611 \

Warm skin, suddenly exposed. Shorter time if skin is cool at the start. Warm skin, suddenly exposed. Shorter time if skin is cool at the start.

Coming up

Lab 2: Isotherms and Isobars

Atmospheric mechanics

- Forces, pressure and wind
- Ahrens: Chapter 8