Lecture 2 - The Atmosphere

 Announcements and updatesGEOG/ENST 2331 Ahrens: Chapter 1 (mainly)

Lecture outline

- Atmospheric composition
- Atmospheric state
, Atmospheric structure

From past midterms/final exams?

* What is the most influential greenhouse gas?

The Atmosphere

- A mixture of gas molecules, aerosols, and falling precipitation

A Aerosol:

- a suspended particle
- microscopic
- solid or liquid

Gases

Mass in reservoir Mass flux

A\&B: Fig. 1.2

Gases

3. 'Permanent' Gases

a Reservoir much larger than flux
6. 'Variable' Gases
a Reservoir similar to or smaller than flux

A\&B: Fig. 1.2

(b)

Permanent Gases

Gas	Symbol	ppmv	Residence Time (in years)
Nitrogen	N_{2}	780840	14000000
Oxygen	O_{2}	209460	4500
Argon	Ar	9300	Forever
Neon	Ne	18	Forever
Helium	He	5	2000000
Xenon	Xe	0.09	Forever

From Ahrens: Table 1.1

Variable Gases

Constituent	Symbol	ppmv	Residence Time (in years)
Water vapour	$\mathrm{H}_{2} \mathrm{O}$	$0-40000$	0.026 (9.5 days)
Carbon dioxide	CO_{2}	410	Multiple timescales
Methane	CH_{4}	1.8	8.4
Nitrous oxide	$\mathrm{N}_{2} \mathrm{O}$	0.314	120
Ozone	O_{3}	0.04	0.25 (91 days)
Aerosols		$0.01-0.15$	Up to 0.04 (14 days)

From Ahrens: Table 1.1

Section outline

- Atmospheric composition
* Atmospheric state
a Describing the atmosphere
- Atmospheric structure

Temperature (T)

- Temperature is a measure of the average speed of air molecules.
- Absolute zero: the temperature, in Kelvin, where molecules do not move
- Absolute zero ($0 \mathrm{~K}=-273^{\circ} \mathrm{C}$)

Other scales: Fahrenheit, Celsius, Rømer, others

Measuring T

6 Thermometer
a Mercury, alcohol
: Electrical
${ }_{3}$ Historical: Wine!

Ahrens: Fig. 3.2

at sea level
$58^{\circ} \mathrm{C}\left(136^{\circ} \mathrm{F}\right)$ Highest
temperature recorded in
the world. El Azizia, Libya,
September 1922
A hot day
Average body temperature $37^{\circ} \mathrm{C}\left(98.6^{\circ} \mathrm{F}\right)$

Freezing (melting) point of water (ice) at sea level

A bitterly pold day
$-69^{\circ} \mathrm{C}\left(-129^{\circ} \mathrm{F}\right)$ Lowest
temperature recorded in the world. Vostok, Antarctica, July 1983

Origin of temperature scales

* Check text page 62-63 Chapter 2
- Origins of temperature scales

Temperature scales require points of reference

Examples

Pressure (P)

* Pressure: Force per unit area

Surface pressure results from the weight of the air above.
as Higher in the atmosphere there is less total air above and hence pressure decreases with height.

Pressure units
SI: pascal ($1 \mathrm{~Pa}=1 \mathrm{~N} / 1 \mathrm{~m}^{2}$) $1 \mathrm{hPa}=100 \mathrm{~Pa}$
American: bar (force of 100000 N on $1 \mathrm{~m}^{2}$)
$1 \mathrm{bar}=100000 \mathrm{~Pa}=1000 \mathrm{hPa}$
$1 \mathrm{hPa}=1$ millibar (mb)

Standard pressure (one atmosphere): $1013.5 \mathrm{hPa}=1013.5 \mathrm{mb}$

Pressure and height

Measuring P

Mercury barometer

Ahrens: Fig. 8.6

Measuring pressure

Aneroid barometer
a variation of volume of a partially evacuated container

Ahrens: Fig. 8.7

Density (ρ)

(5) Density = Mass / Volume
4. Units: $\mathrm{kg} / \mathrm{m}^{3}$
4. Surface: $\rho=1.2 \mathrm{~kg} / \mathrm{m}^{3}$
(3) $150 \mathrm{~km}: \rho=3.6 \times 10^{-9} \mathrm{~kg} / \mathrm{m}^{3}$

A\&B: Figure 1-8

Ideal Gas Law

- Pressure, density and temperature of air are related by the Ideal Gas Law
m $P=\rho T C$ or $\rho=\frac{P}{T C}$
${ }_{3}$ For typical air, $C=287\left[\mathrm{~N} \mathrm{~m} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right]$

Section outline
4. Atmospheric composition

- Atmospheric state
- Atmospheric structure a Vertical structure a Temperature profile

Thermal Layers of the Atmosphere

Troposphere

* Heated from below
* Top boundary called the tropopause

Troposphere

- Well-mixed vertically.
- Averages 11 km thick.
- Contains 80% of the mass of the atmosphere.
- All of our weather occurs in this part of the atmosphere.

Most clouds exist in the troposphere. Occasionally, violent updrafts penetrate cloud tops into the stratosphere. The flattened top of this cumulonimbus cloud is in the stratosphere.

Stratosphere

* Heated from above
* Top boundary is the stratopause

Stratosphere

- Warm air over cold air is very stable mery little vertical mixing
* 11-50 km in height
* 20\% of mass of atmosphere
* Heated by absorption of UV by ozone ${ }^{a}$ Ozone peaks at 25 km (ozone layer)

Mesosphere

(3) $50-85 \mathrm{~km}$

- 99.9% of the rest of the atmosphere (by mass)
* No ozone layer; heated from below
* Well-mixed vertically

Thermosphere

- Above 85 km
n No defined upper threshold

3) Temperatures can reach $1500^{\circ} \mathrm{C}$

* Heated by O_{2} absorbing solar radiation

Next lecture

- Energy and radiation
* Ahrens: Chapter 2

