GEOG 4211 – ADVANCED GIS AND SPATIAL ANALYSIS

Instructor: Dr. Muditha Heenkenda Office location: RC 2006E Office hours: Mon – 10.00 am to 12.00 pm Wed – 10.00 am to 12.00 pm Lab Instructor: Jason Freeburn Office location: RC 2004

Email: muditha.heenkenda@lakeheadu.ca

Email: jason.freeburn@lakeheadu.ca

Course Description:

Advanced GIS and Spatial Analysis is an advanced course in applications of Geographic Information Systems (GIS) and spatial analysis. The first part of the course will introduce advanced spatial analysis techniques. The second part provides an opportunity for students to undertake a GIS project of their choice. Students apply the GIS skills acquired in previous courses (GEOG 2232, GEOG 2215 and GEOG 4231) to a real-world project. A range of GIS methods and data sources will be used, depending on student project selection, but all will include as deliverables a project proposal and a poster, a spatial analysis of some kind, and a documented geodatabase. Both GIS and project management skills will be developed by completing the steps required to take a GIS project from initial proposal to final map production and poster generation.

Learning Outcomes:

Upon successful completion of this course, students will be able to:

- understand advanced spatial analysis techniques: spatial interpolation, network analysis, spatial statistics etc.;
- identify key concepts related to GIS/Remote Sensing and explore how to apply them to solve real world problems;
- select a research problem, background information and scope project objectives;
- identify required data sources, design data preparation and advanced techniques in order to achieve a geospatial solution;
- effectively work independently to fulfil project requirements and to meet deadlines; and
- develop perspectives on GIS, including the pros and cons, as both a decision support technology and a research tool.

Pre-requisites:

GEOG 2232, GEOG 2215 and GEOG 4231

Teaching and Learning approach:

The course will include a mix of theory, discussion, demonstration, guided application, and independent lab time.

Learning Resources:

Recommended: Chang, Kang-tsung. 2019. Introduction to Geographic Information Systems (9th edition). McGraw Hill Education.

Available for a 6 month rental period:

https://www.mheducation.com/highered/product/introduction-geographic-information-systemschang/M9781259929649.html

Assessment:

Task 1: Lab exercises	40%
Task 2: Term project	60%

Course Expectations/Student Responsibilities:

- 1. **Attendance** is expected for each lecture and lab including individual lab time unless communicated with the instructor ahead of time.
- 2. Late Assignments receive a deduction of 10% per day unless an extension is agreed to with the instructor prior to the due date. After class assignments are graded and returned, late assignments receive a zero grade but must be satisfactorily completed to receive credit in the course.
- 3. Participation is expected in all class discussions, group work and collaborative efforts.
- 4. **Exams this is mainly a project-based course and no exams are designed.** However, students must pass the term project to be successful in the course. Students receiving a final mark less than 50 in a course must review their situation with the instructor within two weeks of receiving their marks to identify possible means of improving. The maximum mark the student can achieve through supplemental work is 60.

Course Schedule:

**/	N I		
Week	Monday	Wednesday	Lab exercise
Jan. 6	Course introduction	Spatial interpolation and	Lab1 & 2: A case study –
	including term project and	raster operations	vector/raster analysis in ArcGIS
	Introduction to ArcGIS Pro		Pro
13	Terrain and Watershed	Spatial statistics (pattern,	Lab1 & 2: A case study –
	analysis	cluster/outlier, hot spots	vector/raster analysis in ArcGIS
		analysis)	Pro
20	Spatial statics – modelling	Network analysis	Lab 3: A case study for spatial
	spatial relationships		pattern analysis
27	Network Analysis	Introduction to Term	Lab 4: A case study to find
		Project – proposal writing	optimal solution for a real-world
			problem using network analysis
Feb. 3	Term project – proposal	Term project – proposal	Term project – proposal writing
	writing	writing	Check data availability
	Literature review	Decide on individual topics	
10	Work on term project	Work on term project	Term project proposal due
	proposal	proposal	today before end of the day
17	February Break (no classes)		
24	Discuss proposals in class	Start working on the term	Term project – data management
		project – search for data	and pre-processing
Mar. 2	Term project – data	Term project – data	Term project – data analysis
	analysis	analysis	
9	Term project – data	Term project – data	Progress report 1 due today
	analysis	analysis	
16	Discuss progress report 1	Term project – poster	Progress report 2 (draft
	and project deliverables in	r Jun r	poster) due today
	class – poster template		Former, and to any
23	Feedback for the draft	Term project – poster	Term project – poster
	poster – discuss in class	amendments and prepare	amendments and prepare
	Presentation template	presentations	presentations
30	Print final posters	Finalize presentations	Project poster display and
	r mit mui posters	r manze presentations	presentations

Note that this document is subjected to change pending unforeseen circumstances.