GLOBAL WARMING

GEOG /ENST 3331 — Lecture 21
Ahrens: Chapter 16; Turco: Chapter 12



Previous lecture
N

0 Radiation budget review

0 Driving factors
O Albedo
O Solar forcing

O Greenhouse gases
0 Feedbacks

0 The “climate machine”



Last glacial maximum

S
0 Ice sheets 3 500 — 4 000 m thick
0 Sea level 120 m lower than today

0 Globally averaged temperature was probably
5-8° C colder than today

O Regional temperature differences varied by distance to
ice sheets
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Ahrens: Fig. 16.5



Temperature anomaly (°C wrt 1961-1990)
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Radiative Forcing
N

0 A change in the driving factors that forces a change
in the radiative balance
O Solar strength
O Albedo

O Greenhouse gases



IPCC

S
0 Intergovernmental Panel on Climate Change

0 Founded by United Nations in 1988

0 Purpose: to provide periodic assessments of the
current status of knowledge about climate change

0 Does not conduct research

0 Operates by consensus

O More likely to understate risks



Carbon Dioxide (CO,)
N

O

Prior to 1800s, varied between

180-300 ppmv.

Current concentration is about
404 ppmv.

Emissions:

O Fossil fuels, 6 GtC/yr

O Deforestation, 2 GtC/yr

CO, doubling (560 ppmv) will
occur around 2050

Indefinite lifetime
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Ahrens: Fig. 1.5
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Carbon sinks
B

0 Ocean

O Dissolution increases as atmospheric concentration
increases

0 Terrestrial biosphere
O Photosynthesis on land is limited by CO, availability

O Increased CO, fertilizes growth

0 Net effect
O Roughly 50% of new carbon persists in the atmosphere

O Reservoir is increasing by roughly 4 GtC per year



Methane (CH,)
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Methane sources and sink

-
0 Natural

0 Wetlands, termites, oceans, chemical reactions
0 Anthropogenic

O Ruminant livestock, gas/oil production, coal mining,
landfills and sewage, biomass burning

0 Wetlands are single biggest source, but
anthropogenic sources are 60% of total

O Sink:
O Converted by atmospheric OH into CO, and H,O



Nitrous Oxide (N,O)
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Nitrous Oxide sources and sink
N

0 Natural
O Lightning, fires, decomposition, oceans
0 Anthropogenic

O Nitrogen fertilizers, fossil fuel and biomass combustion

0 Sink:

O Converted by UV radiation in stratosphere to N, and
NO

X



Halocarbons (CFCs, HCFCs, HFCs)

S
0 Used in refrigeration and air conditioning

0 Atmospheric lifespan generally under 100 years

O some in the thousands of years

0 Per molecule, several thousand times as strong as

co,

0 Rapid increase since 1960s

0 CFCs deplete stratospheric ozone; replaced by
HCFCs and HFCs



Other anthropogenic gases

N | —
O Sulphur Hexafluoride (SF,)

O Electrical insulator for power distribution

O Lifetime: 3 200 years

O Strength: 36 000 times as strong as CO,,
0 Perfluorocarbons (PFCs)

O Solvents, refrigerants

O Lifetime: thousands of years

O Strength: thousands of times as strong as CO,



Tropospheric ozone (O,)

0 Doubled in the NH; in many cities it is up by 5-10
times preindustrial levels.

0 Very short lifespan (hours)

0 Ozone precursors:
o NO and NO,,
o VOCGs

0 Main sources:
O Burning biomass and fossil fuels



Stratospheric ozone (also O,)

S
0 Decreasing trend due to CFCs and HCFCs

0 Contributes to observed cooling in the stratosphere
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Modelling climatic change

0 Climate model
simulations driven by:
O Solar forcing
O Volcanic forcing

O With (top) and without
(bottom) anthropogenic
forcing

Ahrens: Fig. 16.19
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Atmospheric Model Grid

Horizontal Grid (latitude-longitude)

Vertical Grid (height or pressure)
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Equilibrium response
N

0 Decades after a change in forcing, climate will
approach a new equilibrium

O Equivalent 2XCO,
0 Combination of all GHGs
0 Will be reached by 2050

O Global mean surface temperature increase of 2-4.5°C



Equilibrium response: High confidence
N

0 Global mean surface temperature increase of

2-4.5°C.
0 Greater warming at high latitudes
0 Greater warming at high latitudes in winter
0 Greater warming of continents than oceans
0 More intense hydrological cycle

0 Cooler stratosphere



Greater warming at high latitudes

O Eegucea ice qna SNOW cover

O Feedback is much stronger
1979-2000 median minimum
locally than globally 71

0 Greater warming in winter:

O In the winter, sea ice insulates
air from warmer water

0 Thinner ice means less
insulation

O Therefore the surface air
temperatures become higher

September 16, 2007 Sea Ice Concentration (percent)
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Greater warming of continents
N

0 Higher temperatures mean increased
evapotranspiration

O Surface cooling through absorption of latent heat

0 Over land, evapotranspiration is limited

O Actual evapotranspiration less than potential because
of limited water supply

0 Over seq, evaporation occurs at the potential rate

O Water supply is unlimited



More intense hydrologic cycle
N

0 Higher temperatures mean increased evapotranspiration
0 Increased evapotranspiration means increased precipitation

O More rain (but not everywhere), and more frequent heavy rains

A&B: Figure
5-1




Cooler stratosphere
N

UAH Lower Stratospheric Anomalies for Jan-Dec
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Equilibrium response: Also likely

S
0 Drier soils at mid-continents in summer
0 Midlatitude precipitation belts will shift poleward

0 Increased variability of precipitation
O More droughts and floods

0 Stronger monsoons in Asia and West Africa



Storms
S [

0 Summer thunderstorms
O High confidence in becoming more intense and frequent

O Higher temperatures and higher humidity
0 Midlatitude cyclones

O May get weaker

O Reduced meridional temperature gradient
0 Tropical cyclones

0 May be fewer but more powerful storms

O Some predictions of greater numbers in North Atlantic



Rise in sea level
N

0 Melting ice sheets
O Greenland, Antarctica, high altitudes

0 Thermal expansion

0 Likely 25-100 cm by 2100
0 Could be more

O Will be more, eventually



Impact on natural systems
S
0 Loss of habitat
0 Species extinctions
00 Ecosystem reorganization

0 Forest diebacks

O Increased fire frequency



Impacts on human systems
N

0 Agricultural losses, especially in tropics
O Heat-sensitive crops
O Valuable coastal land lost to sea level rise

O Droughts and floods
0 Lots of population centres near the ocean

0 Melting permafrost at high latitudes



Impacts on humans

N
0 Water supply

0 Moisture deficits more common

O Saline intrusion along coastlines

0 Infectious diseases

O Disease vectors will shift poleward

® E.g. Malaria mosquito

0 Heat stress



Mitigation
N

0 Need to reduce GHG emissions from a large
number of sources

0 1992: United Nations Framework Convention on
Climate Change (UNFCCC) in Rio de Janiero

0 1997: Kyoto Protocol
O Ratified by 182 countries



Kyoto Protocol (1997)

N
0 CO,, CH,, N,O, HFC, PFCs, SF,

0 Annex | countries have individual targets for
reductions in 2008-2012 compared to 1990

0 Understanding that additional protocols will include
all parties



Details

N
0 Cost sharing: countries initially set their own targets
0 Funding mechanisms: no current targets for LDCs
0 Non-compliance: no penalties

0 Policy instruments:

O Emissions trading between Annex | countries

O Joint implementation with LDCs

0 Largely countries are on their own to meet targets
domestically



Canada

N
0 2002: Ratified the treaty
0 Never taken any meaningful steps

0 Harper government withdrew Canada from Kyoto in
2011 at Durban (COP 17)

0 Will fail to meet targets in 2020

0 US: never ratified, but bigger reductions than
Canada



Kyoto Protocol Targets
N

___ Member | Targel (1990-2008-2012)

EU-15, Bulgaria, Czech Republic, Estonia, Latviq, -8%
Liechtenstein, Lithuania, Monaco, Romania, Slovakia,

Slovenia, Switzerland

USA -7%
Canada, Hungary, Japan, Poland -6%
Croatia -5%
New Zealand, Russia, Ukraine 0
Norway +1%
Australia +8%
lceland +10%

Overall commitment among these countries amounts to -5.6% of 1990 baseline.



Annual Conferences of the Parties (COPs)
since Kyoto
S

COP 15 — Copenhagen (2009)
O No binding agreement or binding targets

O “Meaningful agreement” on 2°C as a maximum warming

COP 17 = Durban (2011)

O Future treaty to be signed in 2015, implemented in 2020
O Kyoto objectives to continue until 2020

COP 18 — Doha (2012)

0 Wealthy countries may be liable for damages if
climate change is not mitigated

COP 21 Paris (2015)



Where do we go from here?

S
0 Follow-ups to Kyoto haven’t been inspiring

O Kyoto was never expected to do enough on its own

0 Smaller international groups and actors

0 Action by individual people is important but
insufficient

0 Change is required
O Reduce energy demand

O Switch to non-fossil energy sources



Next lecture

S
0 Global Engineering



