STRATOSPHERIC OZONE DEPLETION

GEOG/ENST 3331 – Lecture 17 Ahrens: Chapter 18; Turco: Chapter 13

Stratospheric Ozone Depletion

- □ Stratospheric ozone
- Ozone distribution
- Ozone depletion

Ozone Levels in the Stratosphere

Determined by:
 Chemistry
 Radiation
 Dynamics

Ahrens: Fig. 18.5

Ozone and Radiation

 Ozone chemistry is dependent on the amount of short wavelength (ultraviolet) radiation received by the stratosphere.

Creation of Ozone

- $0_2 + UV (<0.25 \ \mu m) \rightarrow 0 + 0$
- $0 + 0 \rightarrow 0_2$ or $0 + 0_2 \rightarrow \mathbf{0_3}$

Oxygen is abundant and these changes occur wherever there is $UV < 0.25 \ \mu m$

Destruction of ozone

 $0_3 + UV (< 0.30 \,\mu\text{m}) \rightarrow 0 + 0_2$

 $0 + 0_2 \rightarrow 0_3$

or

 $0 + 0_3 \rightarrow 20_2$

Ahrens: Fig. 18.6

Ozone reservoir

Ozone and Radiation

Sunspot activity causes a variation in insolation

Greater sunspot activity coincides with greater insolation

Cycle of roughly 11 years

Ozone levels are greater during years of high levels of sunspots

Benefit of the Ozone Layer

- Ultraviolet radiation is dangerous to Earth's biota
- Ozone layer in the stratosphere effectively blocks most UV radiation from reaching surface

"Near" UV spectrum regions

UVA

- **ο** 0.40 0.32 μm
- Used in tanning salons

□ UVB

- **ο** 0.32 0.29 μm
- Tanning/sunburns

□ UVC

- **ο** 0.29 0.10 μm
- "Broadly biocidal"
- Absorbed by O₂ and O₃

Turco: Figure 13.7 1000 nm = 1 μm

Increased UVB exposure

- Skin cancer
- Long-term vision damage
- Amphibians
- Leaf tissue damage
 - Increased plant mortality
 - Decreased crop yields
- Phytoplankton base of marine food chain

Lecture outline

- Stratospheric ozone
- Ozone distribution
 - Brewer-Dobson circulation
 - **QBO**
 - **ENSO**
- Ozone depletion

Ozone distribution

- Most ozone *creation* occurs in the tropics
 Greater intensity of insolation
- Dynamics redistributes ozone:
 Brewer-Dobson Circulation
 QBO (Quasi-biennial Oscillation)
- Highest *concentration* is in the polar regions
 Slower destruction

Measuring Ozone

Gordon Dobson (1889-1976)

- Determined that temperature increases with height in stratosphere
- Proposed existence of the ozone layer
- Invented device for measuring ozone in a column of air

Dobson Unit (DU)

- 1 DU = 10 μm thick equivalent ozone depth (at STP)
- 2.69×10²⁰ molecules per m²

Ozone distribution

Brewer-Dobson Circulation

- Prominent in winter hemisphere
- Provides equator to pole transport of ozone

Quasi-biennial oscillation (QBO)

- 2 to 3 year oscillation in the upper troposphere and lower stratosphere
- Prevailing winds shift from westerly to easterly

QBO and Ozone

QBO appears to be linked to the Dobson-Brewer circulation

High levels of ozone near the poles is associated with the westerly phase of the QBO

El Niño/ Southern Oscillation (ENSO)

- Linked to changes in the
 Dobson-Brewer Circulation
- Enhanced during El Niño years

Lecture outline

- Stratospheric ozone
- Ozone distribution
- Ozone depletion
 - Catalytic destruction
 - Chlorine
 - Nitric oxide
 - Bromine

More ozone chemistry

$$\begin{array}{l} X + O_3 \rightarrow XO + O_2 \\ XO + O \rightarrow X + O_2 \end{array}$$

Net:
$$0 + 0_3 \rightarrow 20_2$$

- □ The catalyst *X* can be NO, OH, Cl or Br
- Catalysts drive reactions but are not consumed
 X remains in atmosphere to react again

Chlorine (Cl) in the Stratosphere

- Biological processes: methyl chloride (CH₃Cl)
 Accounts for 25% of chlorine in stratosphere
- Volcanoes: hydrogen chloride (HCl)
 Negligible
- Anthropogenic: chlorofluorocarbons (CFCs)
 Massive influx of chlorine

CFCs

- Halogen' family of chemicals
 - Aerosol propellants (spray)
 - Refrigerants, degreasers
 - Foam blowing agents
- Low reactivity, low toxicity
- Thermal absorption, solvent properties
- Split up by UV radiation in the upper stratosphere

Turco: Figure 13.11

CFC Suspicions

- 1974 Mario Molina and F. Sherwood
 Rowland noted that there are no tropospheric sinks for CFCs
 - Hypothesized that CFCs released into the atmosphere could have adverse effects on the ozone layer
- Such an impact was detected in the 1980s and afterward, particularly over Antarctica
- Molina and Rowland received the Nobel Prize in Chemistry in 1995
- Why Antarctica?

Molina

Rowland

Brewer-Dobson Circulation

Coloured contours represent ozone concentration (Dobson Units). The bottom of the figure is the height of the tropical tropopause. Gases – including CFCs – enter the stratosphere at the tropics Image Source: Stevenson (2009)

Atmospheric life cycle of CFCs

- 1. Manufacture
- 2. Use and eventual escape
- 3. Build-up in troposphere
- 4. Slow exchange with stratosphere
 - 0.1 Mt-Cl/year
- 5. Dissociation by UV radiation
- 6. Chlorine catalyzes ozone destruction
 - Eventually turns into HCl
- 7. Returns to troposphere and rains out

CFCs in the stratosphere

□ Reservoir: roughly 1 Mt-Cl

- Each CFC molecule could catalyze destruction of up to 100 000 O₃ molecules
- □ Sink: 0.06 Mt-Cl/year
 - In the absence of any source it would take 20 years for CFCs to be removed
 - However, troposphere has an additional 10 Mt-Cl

Nitrogen monoxide

- NO also catalyzes destruction of ozone
- NO in troposphere is largely removed by rain
- Source of stratospheric NO is N₂O
 Fossil fuels: 4 Mt-N/year of N₂O
- Other source: supersonic aircraft
- □ Not nearly as severe as CFCs

Bromine

- Similar gas to chlorine, also catalyzes ozone destruction
- 'Halon' family of chemicals
 - Fumigation (termites and crop pests)
 - Useful as fire retardants/extinguishers
- Chlorine is 100 times as abundant in the atmosphere; but bromine is 10 times as effective per atom

The paradox of Ozone

 Stratospheric ozone essential for various life at the Earth's surface

Ozone in the troposphere harmful to life on land and oceans

Ozone

Earth Observing System Science Plan, Fig. 7.1

Ozone in the troposphere

- Main component of photochemical (Los Angeles) smog
- Noxious substance that irritates eyes and lungs
 - Asthma, bronchitis
- □ Also harmful to trees, crops
 - US: several billion USD per year in crop damage

Next lecture

- Ozone holes
- Remediation
- The Montréal Protocol
- Other environmental global agreements