VULNERABILITY TO POLLUTION

GEOG/ENST 2271 – Lecture 12 Turco: Chapter 7

Last lecture

- Sources and receptors
- Dispersion
- Climate and pollutants
 - Effects of atmospheric stability and inversions

Air Quality: a History of Coal

- Coal formed during the Carboniferous period (360-290 million years ago):
 - Solar energy converted to plant material
 - Vegetation decomposing in swamps
 - 20 m of vegetation compressed to 1 m of coal

Recent release of an enormous backlog of solar energy

Coal in Britain

- First developed by the Romans
- □ 11th century widespread use of 'sea coal'
- 1285 Edward I complains that coal had 'infected and corrupted the air'
- 1306 coal banned in London
- Expanding population and lack of forests encourages coal use once again
- John Evelyn 1661
- Backbone of the Industrial Revolution (1800s)

Coal in the USA

- Largest coal reserve in the world (eastern United States)
- Industry developed in 1800s and was the backbone to American economic success

History of Coal in China

□ Used in China for 6,000 years

Prevalent use in the 11th century

- 1300 Marco Polo notes coal use in China
- Second largest reserves in the world

Current use of Coal in China

Widely used to fuel economic growth in 21th Century

- In 2015 75% of electrical power generation come from coal burning plants
- Produces twice as much coal annually as US
 - Still much less on a per capita basis

Coal and Health

 Smog in China's cities
 Major environmental issue
 Estimated annual mortality of 1,000,000 per year

Tens of thousands for USA
1,800 for Ontario

Haze in Wuhan, China

Many ways of not being good for you

🗆 Toxic

- Directly damages all or part of an organism
- Carcinogenic (or mutagenic)
 - Attacks or mutates DNA
 - Causes cancer
- Teratogenic
 - Causes birth defects

- □ Acute exposure
 - Large dose for a short period of time
- □ Chronic exposure
 - Small dose for an extended period
 - More insidious

Dose: exposure per unit mass

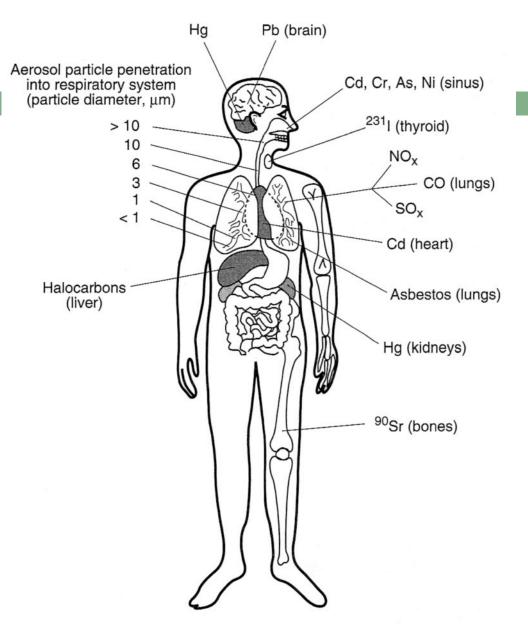
$$D = \frac{Cft}{m}$$

C ~ concentration of toxin, µg/m³
f ~ flow rate into lungs, m³/s
t ~ time, s

 $m \sim \text{mass of receptor, in kg}$

 \Box At rest, typical breathing is about 0.001 m³/s

Typically calculated per unit of body mass
 E.g. mg/kg, µg/kg


 $\square D_{50}$

Causes harmful effects in 50% of exposed population

LD₅₀
 Causes death to 50%

Internal <u>Receptors</u>

- Vulnerabilities
 - Lungs
 - Liver
 - Kidneys
 - Central nervous
 - system

Particulate Matter

Definitions

- TSP total suspended particulate matter
- \blacksquare PM $_{10}$ all particulate matter, 10 μm or less in size
 - Also called respirable suspended particulate (RSP)
- \blacksquare PM_{2.5} all particulate matter, 2.5 μm or less

Environmental Concerns

- Linked to health concerns, especially PM_{2.5}
- Direct damage to respiratory tract

Particulate Matter

- PM is the solid phase of pollutants
- Main sources
 - Coarse PM (> 2.5 μm)
 - Dust, ash, pollen, sulfates, nitrates, soot
 - Fine PM (< 2.5 µm)
 - Soot, smoke, VOCs
 - Active area of research

Heavy metals (toxic particulates)

Metal	oncentrat (ppmm)		
Arsenic (As)	0.5	Cancer of the lungs, liver, and skin; teratogenic; poisonous in large doses	
. ,		Accumulation in the kidneys, lungs, and heart; symptoms like Wilson's disease; 50 ppmm fatal within 1 hour; carcinogenic	
Chromium (Cr)	1.0	Skin rashes, lung cancer (after continued exposure); carcinogenic	
Iron (Fe)	10.0	Siderosis, or red lung disease	
Lead (Pb)	0.15	Brain damage; red blood cell anemia; paralysis of limbs	
Manganese (Mn) 5.0		Aching limbs and back; drowsiness; loss of bladder control; nasal bleeding	
Mercury (Hg)	0.05	Central nervous system attack; tremors and neuropsychiatric disturbance	
Nickel (Ni)	1.0 Skin rashes, cancer of the sinus and lungs (after continued exposure); exposure0.001 ppmm of nickel carbonyl leads to nausea, vomiting, and possible death		
Vanadium (V)	0.5	Acute spasm of the bronchi; emphysema	
Zinc (Zn)	5.0	Fever, muscular pain, nausea, and vomiting	

.....

Carbon Monoxide (CO)

- Displaces oxygen in the bloodstream
- Effect increases with length of exposure
 - Can recover over time
- Effects:
 - Headaches
 - Drowsiness
 - Death

Acids

- \Box Nitrogen Dioxide (NO₂)
 - Forms nitric acid in the lungs
- \Box Sulphur Dioxide (SO₂)
 - Forms sulphuric acid in lungs
- Effects:
 - Damaged tissues
 - Bronchitis
 - Increased risk of infections

Ozone (O_3)

- Oxidizes tissue
 - Effect is similar to a burn
- Restricted air flow
- Build up of scar tissue in the lungs

Airborne toxins and harmful concentrations

Table 7.2 Human Response to Pollutant Exposure

СО	10–30 ppmm ~100 300 600	Time distortion (typical urban) Throbbing headache (freeways, 100 ppmm) Vomiting, collapse (tobacco smoke, 400 ppmm) Death
NO ₂	0.06–0.1 1.5–5.0 25–100 150	Respiratory impact (long-term exposure promotes disease) Breathing difficulty Acute bronchitits Death (may be delayed)
O ₃	0.02 0.1 0.3 1.0	Odor threshold Nose and throat irritation in sensitive people General nose and throat irritation Airway resistance, headaches Long-term exposure leads to premature aging of lung tissue
SO ₂	0.3 0.5 1.5	Taste threshold (acidic) Odor threshold (acrid) Bronchiolar constriction, respiratory infection

Turco: Table 7.2

Volatile organic compounds (VOCs)

- Benzene and other polycyclic aromatic hydrocarbons (PAH)
 - Respiratory irritation, dizziness
 - Carcinogenic
- Solvents (TCE, PCE, MEK)
 - Moderate toxicity at low doses
 - Liver, nerve damage
- Toluene (gasoline additive)
 - Teratogenic, toxic to liver, nerve cells

- Extremely carcinogenic category of VOCs
- Created by burning plastics, PCBs
 - Incineration of municipal waste
 - Accidents (explosions)

Soot is generally high in carcinogenic organic compounds

Lead

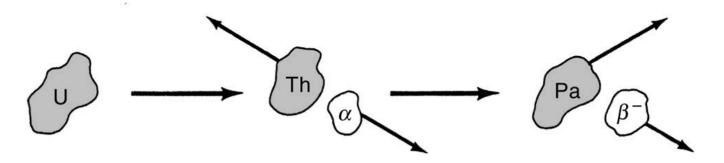
Gasoline additive (no more)

- Turco: before unleaded gasoline, 500 tPb/yr deposited into Los Angeles coastal waters
- Paint (no more, but old paint still in place)
- Industrial processes
- Concentrations found in blood:
 - \square Urban: 20 μ g/100 g
 - **□** Rural: 10 µg/100 g
 - **\square** Harmful: 60 μ g/100 g

- Millions of tonnes used for insulation and fireproofing
- □ Fibres are extremely fine
- Exposure can cause serious lung damage and cancer
- Banned in many developed countries

Canada remains a leading exporter

Radioactivity

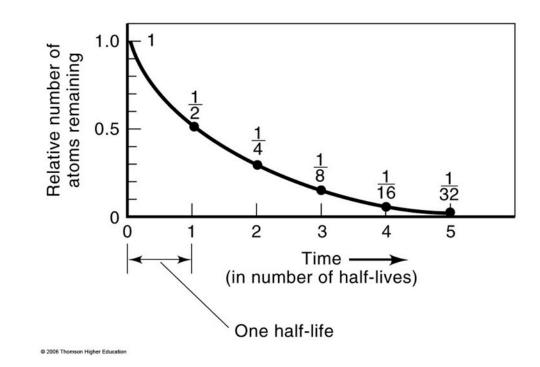

- A subatomic problem...
- Nucleus of atoms made up of protons and neutrons
 Type of element determined by number of protons
 E.g. Oxygen has 8 protons, Carbon has 6
- Some kinds of atoms are unstable (radioactive)
 - Especially heavy ones, e.g. Uranium
 - Spontaneously decay by emitting a subatomic particle
 - Mass and energy released

Ionizing Radiation

- Alpha decay
 - Emission from the nucleus of a 2 proton, 2 neutron particle (α particle)
- Beta decay
 - Conversion of a proton to neutron or neutron to proton
 - **\square** Emission of an electron/positron (β particle)
- Gamma radiation
 - Electromagnetic waves produced by either form of decay (γ ray)

Transmutation

- Atom changes from one element to another
 - Number of protons has changed
- May be part of a series of nuclear decays ending in a stable atom
 - "Decay chain"



H&K: Figure 13.9

Half-life

The length of time it takes for half of the original number of atoms to decay

 $\Box \ \tau_{1/2}$

Half-life

- Decay is random; no way of knowing when an individual atom will decay
- Other half isn't partially decayed; it's exactly the same as it was before, with the same chance of future decay
- 238 J. $\tau_{1/2}$ = 4.5 billion years
- \Box Radon (²²²Rn): $au_{1/2} = 4$ days
- □ Astatine (²¹⁸At): $\tau_{1/2}^{-} = 1.5$ s

Nuclear radiation

Table 13.1 PROPERTIES OF NUCLEAR RADIATIONS					
Type of Radiation	Range				
lpha particles	a sheet of paper, a few centimeters of air, or thousandths of a centimeter of biological tissue				
eta particles	a thin aluminum plate or tenths of a centimeter of biological tissue				
γ rays	several centimeters of lead or meters of concrete				

© 2006 Thomson Higher Education

H&K: Table 13.1

External

- Exposed to radiation from decaying material
- Sometimes intentional
- 🗆 Internal
 - Radioactive material absorbed by the body
 - Decays over time
 - E.g. Plutonium, lodine

Cells and ionizing radiation

Cell death

Genetic damage

Inhibits cell repair

Messes with cell division (reproduction)

Cancer

- Uncontrolled cell division
- May result from a combined effort of radiation and viruses

Radiation 'poisoning'

□ Acute:

- "Radiation sickness"
- Skin lesions
- Eventual organ failure or haemorrhaging leading to death
- LD₅₀ is 450-600 rem
- Teratogenic in smaller doses

Chronic:

- Carcinogenic
- Risk appears to accumulate over a lifetime

Radiation sources

- Natural exposure
 - Radioactive sources in the Earth's crust
- Nuclear weapons
 - Limited Test Ban Treaty, 1963
 - Last atmospheric test by China in 1980
 - Comprehensive Test Ban Treaty, 1996
 - India, Pakistan: 1998; North Korea: 2006, 2009, 2013 and 2016
 - Nuclear reactors
 - Minimize radioactivity of released material

Radiation sources (more)

- Medical treatment
 - X-Rays
 - Cancer diagnosis and treatment
- Built environment
 - Concrete, stonework, basements

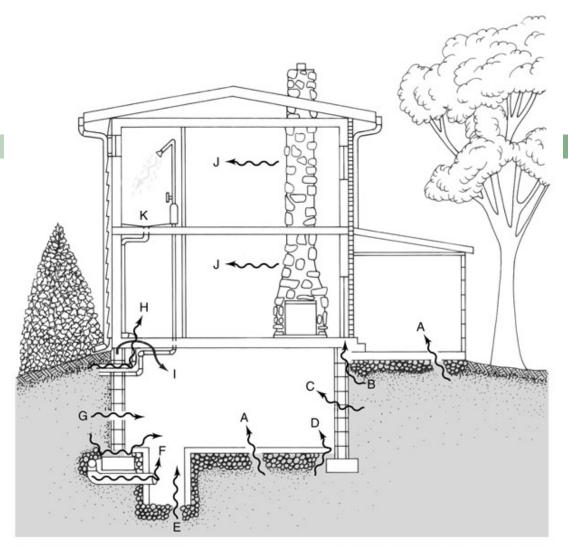

lonizing radiation exposure

Table 15.5AVERAGE ANNUAL RADIATION DOSE RECEIVEDBY INDIVIDUALS IN THE UNITED STATES

Source	Effective Dose Equivalent (mrem/y)	_	
Natural sources			
Inhaled radon daughters	200	-	
Cosmic rays	30	-	
Terrestrial	30		
Internal natural radionuclides	40	-	
Artificial Sources		-	
Medical, dental X-rays	39		
Nuclear medicine	14		
Consumer products	9		
All other sources (including occupational, fallout, nuclear fuel cycle)	<3	15.5	
Rounded Total	360	-	

Radon (Rn)

- Gaseous at normal temperatures and pressure
- Part of uranium and thorium decay chains
 Half-life of 4 days
- "Daughter" elements are solid
 - Latch on to dust particles
 - Inhaled
- Estimated to be second-largest cause of lung cancer in US
 - **10-15%**

- A. Cracks in concrete slabs
- B. Spaces behind brick veneer walls that rest on uncapped hollow-block foundation
- C. Pores and cracks in concrete blocks
- D. Floor-wall joints
- E. Exposed soil, as in a sump

- F. Weeping (drain) tile, if drained to open sump
- G. Mortar joints
- H. Loose-fitting pipe penetrationsI. Open tops of block walls
- J. Building materials, such as some rock
- K. Water (from some wells)

After Reading Week

MIDTERM Feb. 24
Urban air quality Feb. 26