GLOBAL BIOGEOCHEMICAL CYCLES

GEOG/ENST 3331 – Lecture 10 <u>Turco: Chapter 10;</u> Dearden and Mitchell: Chapter 4

Assignment 4

- Suppose that a layer of air 1000 m thick has conditional stability. A rising parcel of dry air within the layer will be pushed back down.
 - What does 'conditional stability' tell us about the temperature profile of the layer? What can you say quantitatively about the environmental lapse rate?
 - 2. How would the stability be affected if the layer passed over a very warm surface?
 - 3. How would the stability be affected if the layer passed over open water?

Last Lecture

Weather forecasting
 Prediction methods
 Numerical weather prediction
 Long-range forecasting
 Memory
 ENSO and NAO

Global biogeochemical cycles

Objectives

- Recognize biologically important and abundant chemicals and their associated reservoirs
- Understand the flows between reservoirs and be able to characterize them as large or small, fast or slow
- Consider anthropogenic perturbations to these cycles and gain an idea of their implications

Global biogeochemical cycles

Reservoirs

- Box models and fluxes
- Sources and sinks
- Residence time
- Hydrological cycle
- Carbon cycle

Box models

□ Q ~ total mass

- $\square S \sim source$
- \Box *L* ~ sink

Mass balance

 $\Box \Delta Q = S - L$

Steady state

 $\Box L = S, \Delta Q = 0$

Turco: Figure 10.2

Residence time

Multiple reservoirs

Closed system

- Extend mass balance
- Every flux is a source and a sink

Example

Reservoirs

- Atmosphere
- Hydrosphere
 - Mixed layer
 - Deep ocean
- Lithosphere
 - Crust and upper mantle
 - Sediments
- Biosphere
- Cryosphere

Hydrological cycle

Importance

- Redistribution to the land
 - Liquid sinks in and flows downhill
 - Important to biosphere
- Desalinization
- Mobilizing Contaminants
 - Universal solvent
 - Precipitation washes out atmosphere
 - Runoff leaches compounds from rocks/soil

Human impacts

Consumption

- Freshwater for drinking
- Cooking
- Transportation
- Hydroelectricity

- Water quality
 - Toxins
 - Nutrients

Carbon cycle

- □ Multiple processes
- Multiple timescales

- Surface (100 m or less)
 - Well-mixed (winds)
 - Photosynthesis only in top few metres
 - Some life exists further down

- Deep ocean (average nearly 4 km deep)
 - Stratified
 - Mostly barren
 - Thermohaline: very slow circulation

Air-sea cycle

Small biomass reservoir in ocean; small fluxes

Large exchange with atmosphere

Thermohaline: slow circulation to deep ocean

Recap: Fast Processes

- Air-biomass exchange: 80 GtC/year
- □ Air-ocean exchange: 50 GtC/year
- Surface-deep ocean exchange: 25 GtC/year
- Ocean-biosphere exchange: 5 GtC/year

Importance

- Plant food
- □ Greenhouse effect from CO₂
 - Also Methane (CH₄)
 - Anaerobic decomposition
 - Transformed into CO₂ in atmosphere

Human impact

Gradual burial of organic material over hundreds of millions of years

Converted by temperature and pressure into fossil fuels

Extracted and consumed for energy

Unbalanced flux to the atmosphere of 7-8 GtC/year

- Deforestation: increased flux from biosphere to atmosphere of 2 GtC/year
- Also increases in methane (CH₄), and carbon monoxide (CO)

Effects of additional CO₂

- Global warming
- Fertilization of plant growth
- Increased carbonic acid in ocean
 - Decreased calcium carbonate formation
 - Uncertain other direct effects

Global geochemical cycles, continued

- Oxygen cycle
- Nitrogen cycle
- Sulfur cycle

- \square 1 million GtO in the atmosphere (mostly O_2)
 - Much, much more oxygen is contained in the crust in the form of mineral oxides
- Very reactive
- \Box Source: photosynthetic consumption of CO₂
 - $\square 6CO_2 + 6H_2O + sunlight \rightarrow C_6H_{12}O_6 + 6O_2$
 - $\square O_2$ is a by-product of this reaction
 - Removes carbon from the atmosphere; if the carbon is not returned to the atmosphere, there is a net oxygen source

Oxygen cycle

- Link: 0.18 GtCO₂
 0.05 GtC
 0.13 GtO
- Burial is largely sediments in the ocean
- Long-term: sink is balanced by recycling buried carbon

Importance

- Critical to aerobic respiration
 - Historically, led to the evolution of complex organisms
- Required for combustion
 - Forest fires
- Absorbs UV radiation
 - **\square** Leads to presence of ozone (O₃) in atmosphere
 - Some O₂ is split apart by UV radiation and reacts with other O₂ to form O₃

Human impact

Insignificant

- \Box Atmosphere: $\tau = 5000$ years
 - If photosynthesis stopped respiration would deplete the atmosphere in 5000 years
- Fossil fuel combustion
 - Sinks O₂ at rate of 18 GtO/year
 - Turco estimate: all accessible fossil fuels would sink 23000 GtO from atmosphere

- \square N₂ is 78% of the atmosphere by volume
 - Inert gas
 - Some bacteria specialize in nitrogen fixation
- \square N₂O is a trace gas
 - Also inert
- \square NO_x (NO and NO₂)
 - Reactive gases
 - Soluble

N₂O cycle

Importance

$\square N_2$

Nitrogen fixation is vital for the biosphere

- $\square N_2O$
 - Potent greenhouse gas
 - 'Regulates' stratospheric ozone
- □ NO_x
 - Smog
 - Acid rain
 - Fertilizer

Human influence

- 🗆 Fertilizer
 - Eutrophication
 - \square Increased N₂O
- Fossil fuels
 - \square Increased N₂O and NO_x
- □ Fires
 - Increased NO_x

Sulfur

- Mainly found in mineral form
- Important trace nutrient
 - Present in fossil fuels
- Sulfuric acid
 - Common industrial uses
 - Car batteries

Atmospheric Sulfur

- Natural sources:
 - Oceans
 - Volcanoes
 - Biological activity
- □ Sink:
 - Precipitation (deposition)

Sulfur cycle

Importance

- Essential nutrient
- Major source of cloud condensation nuclei (CCN)
 - Gaia hypothesis:
 - Ocean phytoplankton release sulfur gases
 - Modify albedo
 - Biospheric thermostat?

Human impact

- Gaseous emissions
 - Fossil fuels
 - 90 MtS/year
 - Acidic rain and fog
- Fertilizer
 - 30 MtS/year
- Wastewater30 MtS/year

Reservoir review

Chemical	Atmosphere	Ocean	Biosphere	Crust
S	Minor	Large	Small	Large
Ν	Large	Minor	Small	Minor
Ο	Small	Small	Minor	Large
С	Minor	Small	Minor	Large

Turco: Table 10.1

Next lecture

- Air pollution and air quality
- Smog