

Global Climatic Change

GEOG/ENST 2331 – Lecture 22 Ahrens: Chapter 16

Global Climatic Change

- Review: Radiation balance
 Enhanced greenhouse effect
 human-induced change
- Climate feedbacks

Climatic change

Climate

- Long-term description of weather patterns
- "Expectations"
- Mean, variability, extremes, frequency

Climatic change

- A change in these statistical values
- Climate change, such as warming, may vary differentially across the globe

Climate and weather

- Weather changes happen all the time
 These are regular features of a complex system
- Local climate changes can occur as a result of changes to local conditions
 - Albedo, landforms, water bodies
- Global climate changes require changes in the global energy balance

Climate change history

Ahrens: Fig. 16.5

Recent global warming

Zero line is 1951-1980 Ahrens: Fig. 16.7

Thermodynamics

First Law of Thermodynamics Energy cannot be created or destroyed *E_{in}* = *E_{out}* + Δ*E_{stored}* At equilibrium, Δ*E_{stored}* = 0 and *E_{in}* = *E_{out}*

• Note that T is a function of E_{stored}

Thermodynamics

Stefan-Boltzmann Law

- All matter emits radiation proportional to the fourth power of its temperature
- E_{out} is proportional to T^4

- For the Earth:
 - E_{in} is radiation coming from the sun
 - *E E*_{out} is radiation emitted by Earth

Thermodynamics

So:

At *equilibrium*, Earth's temperature must be $E_{out} = E_{in}$

- If E_{out} is less than E_{in} there will be an increase in E_{stored}
- This will cause T to increase until the fluxes are equal again
- If the amount of radiation emitted by the Earth is less than what it receives from the Sun, there will be a global warming

Earth's Energy Balance

We calculated the effective radiative temperature of Earth:

255 K (-18°C)

The Greenhouse Effect

255 K

288 K

Ahrens, Fig. 2.12

What can change the global energy balance?

- Incoming energy
 Solar strength
 Aerosols (e.g. volcanoes)
- Outgoing energy
 Greenhouse gases
 Change in land use

Natural

- ✤ H₂O
- CO₂
- CH₄
- N₂O

♦ O₃

Enhanced

- CO₂
- CH₄
- N₂O
- O₃
- Halocarbons (CFCs)
- SF₆
- Perfluorocarbons (PFCs)

Carbon Dioxide

Preindustrial concentration was 280 ppmv

Current concentration is about 400 ppmv

Emissions: Fossil fuels, 9 GtC/year Deforestation, 2 GtC/year

CO₂ doubling will occur around 2050 (560 ppmv)

Ahrens: Fig. 1.5

Historical Carbon Dioxide

10000 years from the present

Methane: CH_4

Preindustrial	0.7 ppmv
Current	1.78 ppmv
Atmospheric Lifetime	8-12 years
Anthropogenic Emissions	Livestock (cattle) Natural Gas Leaks Oil and Coal Extraction Landfills Biomass Burning Sewage Treatment Rice Paddies
Strength vs. CO ₂	26 times

10000 years before present

Nitrous Oxide: N₂O

Preindustrial	0.275 ppmv
Current	0.32 ppmv
Atmospheric Lifetime	120 years
Anthropogenic Emissions	Fertilizers Fossil Fuels Deforestation
Strength vs. CO ₂	206 times

Ahrens: Fig. 16.27

Halocarbons: CFCs, HCFCs, HFCs

- Used in refrigeration and air conditioning
- Per molecule, often several thousand times as strong as CO₂
- Rapid increase in concentration since 1960s
- CFCs deplete stratospheric ozone; replaced by HCFCs and HFCs

Other anthropogenic gases

Sulphur Hexafluoride (SF₆)

- Electrical insulator for power distribution
- Lifetime: 3 200 years
- Strength: 36 000 times as strong as CO₂

Perfluorocarbons (PFCs)

- Solvents, refrigerants
- Lifetime: thousands of years
- Strength: thousands of times as strong as CO₂

*Tropospheric ozone: O*₃

- Doubled in the NH; in many cities it is up by 5-10 times preindustrial levels.
- Very short lifespan (hours)
- Ozone precursors:
 - NO and NO₂
 - Hydrocarbons
 - CO 🖸
- Main sources:
 - Burning biomass and fossil fuels

Stratospheric ozone: also O₃

Decreasing trend due to CFCs, HCFCs, and others

Loss contributes to global *cooling* in the stratosphere

Other contributors to global climatic change

Aerosols

Tiny particles suspended in the air

- Reflect sunlight and increase cloud reflectivity
- Tropospheric air pollution (SO_x, NO_x)
 Volcanoes

Other contributors to global climatic change

Land cover change

- Urban heat islands
- Deforestation increases surface albedo

Solar variation

- Observed changes have been small
- Long-term cycles not well-understood

Feedbacks

- A response to an change that acts to amplify or diminish the initial change
- E.g. sound system amplifier, thermostat
- A climate feedback responds to a change in climate by causing *less or further change* Positive feedback: more change
 Negative feedback: less change

- Saturation vapour pressure depends on temperature
- Higher temperatures lead directly to increased water vapour
- Water vapour is a greenhouse gas
- Positive feedback

Ice and snow

- Ice and snow are very reflective
- Sensitive to changes in temperature
- Also a positive feedback

Ahrens: Fig. 2.13

Clouds

Reflect shortwave (solar) radiation
 Cover 50% of surface, albedo of 50%

- Absorb longwave (terrestrial) radiation
- Emit radiation to space and back down to the surface

Changes in the extent of clouds affects all three

Forcing from Doubling CO₂

Pre-industrial CO₂: 280 ppmv

Actual doubling of CO₂: 560 ppmv

- Likely around 2050
- However, other greenhouse gases are increasing as well
- Equivalent 2×CO₂ when the combined radiative forcing is equal to that of 560 ppmv of CO₂

Climate sensitivity

- The globally averaged equilibrium change in temperature in response to a given radiative forcing
 - Decades after a change in forcing, climate will approach a new equilibrium
- The predicted climate sensitivity to 2×CO₂ is between 1.5 and 4.5°C
- 🕸 To date,

Continentality

With warmer temperatures, rate of evaporation will increase

- Evaporation causes latent cooling
- Increase in evaporation will be larger over open water
- Continents will warm more than the average
 And oceans will warm less
 - Mid-continents with dry soil will warm the most

Latitude

- 1. Greater warming is occurring at higher latitudes due to the ice albedo feedback
- 2. In the winter, sea ice insulates cold air from warmer water
 - Thinner ice means less insulation
 - Even greater polar amplification in winter

Hydrological cycle

More intense overall

Increased evapotranspiration, precipitation

Likely (but less certain):

- Drier soils at mid-continents in summer
- Midlatitude precipitation belts will shift poleward
- Increased variability of precipitation
 - More droughts and floods
- Stronger monsoons in Asia and West Africa

Storms

Summer thunderstorms

- High confidence in becoming more intense and frequent
- Midlatitude cyclones
 - May get weaker

Tropical cyclones (hurricanes)

- Opposing factors at work
- Could become less frequent but more intense

Rise in sea level

Melting ice sheets

- Greenland
- Antarctica
- Mountains

Thermal expansion

Rise in sea level

IPCC expects 30-100 cm by 2100 Probably a low estimate

Much more on the way; sea level rise is slow

- Inundation
- Infiltration
- Storm damage

ENSO

- Average climatic conditions could become more El Niño-like
- El Niño events could become stronger or more frequent, increasing climatic variability.

Impacts on natural systems

- Loss of habitat
- Species extinctions
- Ecosystem reorganization
- Forest diebacks
 - Increased fire frequency

Impacts on built systems

- Agricultural losses, especially in tropics
 - Heat-sensitive crops
 - Valuable coastal land lost to sea level
 - Droughts and floods
- Population centres affected by sea level rise
- Melting permafrost at high latitudes
 Buildings, road, railways, pipelines

Impacts on humans

Water supply

- Moisture deficits more common
- Timing of rainfall can cause stress
- Saline intrusion along coastlines

Infectious diseases

- Disease vectors will shift poleward
- 🛚 E.g. Malaria mosquito

Heat stress

Conference of the Parties (COP)Paris, FranceCOP 21

Final exam

Saturday, December 12

- 🛚 1 pm 4 pm
- Gymnasium W and Y

Cumulative for all lecture material

Same format as the midterm

- 80 multiple choice
- 8 short answer

Atmospheric circulations

Thermal winds

- Land/lake breeze
- Mountain/valley breeze
- 🛚 Monsoon

Global circulation

- Three cell model
- Jet Streams
- Planetary Waves

ENSO

Moving air

Air masses

- Source regions and classification
- Modifying air masses

Fronts

- Barm, cold, stationary, occluded, dryline
- Changes in temperature, humidity, wind direction, pressure and cloud cover

Midlatitude cyclones

Polar front theory Life cycle and dissipation

Upper air divergence

- Baroclinic instability
- Jet streaks
- Vorticity

Thunderstorms

- Ordinary storms
- Multicell storms
- Supercell storms
- Lightning and thunderHail
- Tornadoes

Hurricanes (Tropical Cyclones)

- Climatology
- Dynamics
- Lifespan

Hazards

- High winds
- Storm surge
- Heavy rains
- Forecasting

Polar lows

Climate Classification

- The Köppen system
- Based on vegetation
- 5 types, plus 'Highland'

Global climatic change

Causes

- Review of the radiation balance
- Anthropogenic greenhouse gases
- Radiative forcing
- Feedbacks

Results

- Climate sensitivity
- Distribution of changes in temperature and precipitation
- Sea level rise

That's all, and

DO WELL!