

Seasons: Temperature and Time

GEOG/ENST 2331 – Lecture 5 Ahrens: Chapters 2 and 3

Energy Balance and Temperature

- Global energy budget
 - Incoming solar radiation must be balanced by outgoing terrestrial radiation
 - Temperature of Earth is determined by energy stored in the system

Earth-atmosphere exchange

Shortwave Radiation (imagine 100 total units)

Ahrens: Figure 2.17

Earth-atmosphere energy balance

Convection

Conduction: direct heat exchange Warm air becomes less dense

Convection:

Rising air carries
 heat away from the
 surface

Ahrens: Fig. 2.6

Free Convection

A&B: Figure 3-12

Forced Convection

© 2010 Pearson Education, Inc.

A&B: Figure 3-13

Latent heat

Energy required to change the state of a substance

- Liquid to gas: heat of evaporation
- Solid to liquid: heat of fusion
- Heat is 'hidden'
 - No change in temperature

Thermal Storage and phase change

Latent heat

Liquid to gas
Absorbs heat (at the surface)
Gas to liquid
Releases heat (in the atmosphere)

Radiative, convective and latent transfers

Global coordinate system

Beam spreading

A beam of sunlight spread over a large area is less intense

Higher latitudes
 receive less solar
 energy per unit area

Also passes through more air

Ahrens: Fig. 3.7

Axial tilt

- Axis of rotation is offset
 23.5° from being perpendicular to the orbital plane
- Hemispheric orientation changes as the Earth orbits the Sun

Ahrens: Fig. 3.3

Solstices

- One hemisphere axis of rotation is pointed toward the Sun; the other is pointed away
- The hemisphere pointed toward the Sun receives its maximum insolation on this date
- Astronomically, these dates designate the first day of winter or summer

Equinoxes

March (Vernal) Equinox
On or about March 20
September (Autumnal) Equinox
On or about September 22
September 23 this year

The sun is visible for 12 hours everywhere

Intensity of Radiation

Beam spreading

- Incident radiation is directly proportional to solar angle
- Higher solar angles incorporate reduced *beam spreading*
- Lower angles induce less intense illumination and heating per unit area

Beam depletion

- Solar radiation is diminished relative to the *amount* of atmosphere the radiation passes through (distance through the air)
- Significant beam reduction occurs at low solar angles
- Period of Daylight
 - Axial tilt influences day length
 - Days are longer in summer and shorter in winter
 - Effect is more pronounced at high latitudes

 Table 3.1 Length of Time from Sunrise to Sunset for Various Latitudes on Different Dates in the Northern Hemisphere

Latitude	March 20	June 21	September 22	December 21
0°	12 hr	12.0 hr	12 hr	12.0 hr
10°	12 hr	12.6 hr	12 hr	11.4 hr
20°	12 hr	13.2 hr	12 hr	10.8 hr
30°	12 hr	13.9 hr	12 hr	10.1 hr
40°	12 hr	14.9 hr	12 hr	9.1 hr
50°	12 hr	16.3 hr	12 hr	7.7 hr
60°	12 hr	18.4 hr	12 hr	5.6 hr
70°	12 hr	2 months	12 hr	0 hr
80°	12 hr	4 months	12 hr	0 hr
90°	12 hr*	6 months	12 hr*	0 hr
		10 C		

Ahrens: Table 3.1

*The sun rises on March 20 and sets on September 20.

Table 2–2 Variations in Solar Angle and Daylength

	Solar Angle at Noon	Length of Day	Total Radiation for Day (Megajoules/m ²)
December 21			
Winnipeg	25.5°	8 hr, 34 min	7.44
Austin	45.5°	10 hr, 04 min	12.18
June 21			
Winnipeg	63.5°	16 hr, 10 min	37.15
Austin	83.5°	13 hr, 56 min	35.97

Diurnal heat budget

A&B: Figure 3-23

A&B: Figure 3-23

Diurnal surface air temperature

Ahrens: Fig. 3.12 and 3.14

Extemes of Temperature in Thunder Bay

 Heat
 Cold

 40.3° C
 -41.1° C

August 7, 1983 January 30, 1951

Next lecture

Temperature and GeographyAhrens: Chapters 2 and 3