

Energy and Radiation

GEOG/ENST 2331 – Lecture 3 Ahrens: Chapter 2

Last lecture: the Atmosphere Mainly nitrogen (78%) and oxygen (21%)

T, *P* and *ρ*The Ideal Gas Law

Temperature profiles

Lecture outline

- Energy
- Radiation
- Radiation and the atmosphere

Energy What is energy? The ability to do work

What is work?

The transfer of energy from one system to another

The ability of one system to change another system Pushing, pulling, lifting, compressing, etc.

Work is the energy transfer required to achieve a change

- Potential energy
 - Gravitational
 - 🛚 Chemical
 - Electrical
- Kinetic energy

Energy, work, and heat

- Energy is the ability of one system to change another system
- Work is the energy transfer required to achieve a change
- Heat is the energy transferred between systems because of the difference in their temperatures

Temperature

A measure of the average speed of air molecules

Average kinetic energy per molecule

Sensible heat transfer

Heat exchange that causes a change in temperature

Can 'sense' it

Specific heat

A measure of the amount of heat transfer required to raise the temperature of a substance

Specific heat

SUBSTANCE	SPECIFIC HEAT (J kg ⁻¹ K ⁻¹)
Water (pure)	4186
Wet mud	2512
Ice $(0^{\circ}C)$	2093
Sandy clay	1381
Dry air (sea level)	1005
Quartz sand	795
Granite	794

- Energy that is 'hidden' by phase changes
 Gas > Liquid > Solid
- Phase changes absorb or release latent heat without a change in temperature

Heat transfer mechanisms

- Conduction
 - Direct contact between substances
- Convection
 - Heat is transported by a moving fluid
- Radiation
 - Electromagnetic waves

Heat transfer

Radiation

- Electromagnetic waves
- Propagates energy transfer with no physical medium
- Continually emitted by all substances

Insolation

Term: Solar constant

- Radiant energy from the Sun is transferred to the Earth's surface where it is absorbed, providing energy for:
 - 🛚 Winds
 - Storms
 - Melting and evaporation
 - Chemical reactions
 - Photosynthesis

Radiation

Radiation *quantity*:
Amount of energy
Radiation *quality*:
Wavelength
Speed of propagation
Constant
300 000 km/s

A&B: Figure 2.5

Stefan-Boltzmann Law (quantity)

- All matter emits radiation
- Intensity of radiation in W/m² is proportional to T^4

$\boldsymbol{I} = \varepsilon \boldsymbol{\sigma} \boldsymbol{T}^4$

- $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2\text{K}^4$
- \circ ε is the *emissivity* of the object, ranging from 0 to 1

Emissivity and blackbodies

$I = \varepsilon \sigma T^4$

- ε is the emissivity of the object, ranging from 0 to 1.
- Objects that have an emissivity of 1 (i.e. perfect emitters) are called *blackbodies*.
- A blackbody is a 100% efficient emitter (and absorber) of radiation *at all wavelengths*
- $I = \sigma T^4$
- Most opaque objects can be approximated as black bodies

TYPE OF RADIATION	RELATIVE WAVELENGTH	TYPICAL WAVELENGTH (metres)	ENERGY CARRIED PER WAVE OR PHOTON
	Wavelength		Increasing
AM radio waves	\frown	100	
Television waves	$\sim \sim$	1	
Microwaves	$\sim \sim \sim$	1 0 ⁻³	
Infrared waves	$\sim \sim \sim \sim$	10-6	
Visible light		5 x 10 ⁻⁷	
Ultraviolet waves		10-7	
X rays		1 0 ⁻⁹	

Ahrens: Fig. 2.7

Wien's Law (quality)

The wavelength of the peak value of the emission spectra is inversely proportional to temperature

$$\lambda_m = \frac{2897}{T}$$

- Constant of proportionality is 2897 μ m K.
 - 1 micrometre (or micron) equals 10⁻⁶ m.

Temperature and Wavelength

Sun $=\frac{2897}{6000}\approx 0.48 \ \mu m$ Earth $=\frac{2897}{288}\approx 10\ \mu\mathrm{m}$ λ_m

Ahrens: Fig. 2.9

Solar radiation as a function of wavelength

Ahrens: Fig. 2.10

Radiation and the atmosphere

What can happen to *insolation* that enters the top of the atmosphere?

Transmission

- Scattering
- Reflection
- Absorption

Scattering

Term: Rayleigh scattering

- When incoming radiation encounters small particles the radiation is deflected in all directions.
- The amount of scattering from air molecules is much higher for short wavelengths (blue and violet) than for longer waves (yellow and red).
- The colour of the sky is determined by the scattering of visible light in the atmosphere.

The sky is blue

Ahrens: Fig. 5, p. 48

Reflection

Ahrens: Fig. 2.17

Absorption

- Blackbodies absorb all non-reflected radiation
 E.g. the planet surface
- Selective absorbers absorb some wavelengths, but allow other wavelengths to pass through (transmission)
- The atmosphere is generally transparent to visible wavelengths, but not to others

Kirchhoff's Law (absorption)

- All substances do not absorb all wavelengths equally
- Kirchhoff's Law states that strong absorbers are also strong emitters at the same wavelength

$\boldsymbol{\varepsilon}_{\lambda} = \boldsymbol{a}_{\lambda}$

- ${m {\cal E}}$ is the emissivity
- **a** is the absorptivity
- λ is a wavelength of radiation.

Absorption in the atmosphere

Ultraviolet radiation is absorbed by oxygen (thermosphere) and ozone (stratosphere).

Infrared radiation is absorbed by greenhouse gases

Ahrens: Fig. 2.14

Greenhouse gas

- An atmospheric constituent that traps outgoing terrestrial radiation.
 - Water vapour (H₂O)
 - Carbon dioxide (CO₂)
 - Methane (CH₄)
 - Nitrous oxide (N₂O)
 - Ozone (O₃)
 - and another group including CFCs, HFCs

Next lecture

Earth's radiation budgetAhrens: Chapter 2