

Lecture 2 – The Atmosphere

Announcements

GEOG/ENST 2331 Ahrens: Chapter 1

Lecture outline

Atmospheric composition

- Atmospheric state
- Atmospheric structure

The Atmosphere

A mixture of gas molecules, aerosols, and falling precipitation

Aerosol:

- a suspended particle
- microscopic
- solid or liquid

Gases

Residence time = $\frac{\text{Mass in reservoir}}{\text{Mass flux}}$

A&B: Fig. 1.2

Gases

'Permanent' Gases Reservoir much larger than flux

Variable' Gases Reservoir similar to or smaller than flux

(a)

(b)

A&B: Fig. 1.2

Permanent Gases

Gas	Symbol	ppmv	Residence Time (in years)
Nitrogen	N ₂	780 840	14 000 000
Oxygen	O ₂	209 460	4 500
Argon	Ar	9 300	Forever
Neon	Ne	18	Forever
Helium	He	5	2 000 000
Xenon	Xe	0.09	Forever

From Ahrens: Table 1.1

Variable Gases

Constituent	Symbol	ppmv	Residence Time (in years)	
Water vapour	H ₂ O	0 - 40 000	0.026 (9.5 days)	
Carbon dioxide	CO ₂	389	Multiple timescales	
Methane	CH ₄	1.8	8.4	
Nitrous oxide	N ₂ O	0.314	120	
Ozone	O ₃	0.04	0.25 (91 days)	
Aerosols		0.01 - 0.15	Up to 0.04 (14 days)	

From Ahrens: Table 1.1

Lecture outline

Atmospheric composition Atmospheric state Describing the atmosphere Atmospheric structure

*Temperature (***T***)*

- Temperature is a measure of the average speed of air molecules.
- Absolute zero: the temperature, in Kelvin, where molecules do not move
 - Absolute zero (0 K = -273°C)
 Other scales: Fahrenheit, Celsius,
 - Rømer, others

Measuring T

Thermometer

- Mercury, alcohol
- Electrical
- Historical: Wine!

Ahrens: Fig. 2.2

к	11	°C	°F	
373	-	- 100 -	- 212	Boiling point of pure water at sea level
363	-	- 90 -	- 194	
353	-	- 80 -	- 176	
343		- 70 -	- 158	58°C (136°F) Highest temperature recorded in the world. El Azizia, Libya, September 1922
333	-	- 60 -	- 140	
323	-	- 50 -	- 122	
313	_	- 40 -	- 104	A hot day Average body temperature 37°C (98.6°F)
303	-	- 30 -	- 86	
293	-	- 20 -	- 68	
283	-	- 10 -	- 50	
273	-	- 0 -	- 32	Freezing (melting) point of water (ice) at sea level
263	-	10 -	- 14	
253	-	20 -	4	
243	-		22	A bitterly cold day
233	-	40 -	40	
223	-		58	
213	-	60 -	76	
203	-	70 _	94	
193	-	80 _	112	-89°C (-129°F) Lowest temperature recorded in the world. Vostok, Antarctica, July 1983
183	-	90 -	130	
173	-		148	

Origin of temperature scales

 Check text – page 34 - 35
 Origins of temperature scales Temperature scales require points of reference

Examples

Pressure (P)

Pressure: Force per unit area

- Surface pressure results from the weight of the air above.
- Higher in the atmosphere there is less total air above and hence pressure decreases with height.

Pressure units

SI: pascal (1 Pa = 1 N / 1 m²) 1 hPa = 100 Pa American: bar (force of 100 000 N on 1 m²) 1 bar = 100 000 Pa = 1000 hPa 1 hPa = 1 millibar (mb)

Standard pressure (one *atmosphere*): 1013.5 hPa = 1013.5 mb Pressure and height

Ahrens: Fig. 1.10

Measuring P

Mercury barometer

Ahrens: Fig. 8.6

Measuring pressure

Aneroid barometer variation of volume of a partially evacuated container

Ahrens: Fig. 8.7

Density (ρ)

- Density = Mass / Volume
 Units: kg/m³
- Surface: ρ = 1.2 kg/m³
 150 km: ρ = 3.6 × 10⁻⁹ kg/m³

Ideal Gas Law

Pressure, density and temperature of air are related by the Ideal Gas Law

$$P = \rho TC, \text{ or } \rho = \frac{P}{TC}$$

For typical air, C = 287 [N m kg⁻¹ K⁻¹]

Lecture outline

- Atmospheric composition
- Atmospheric state

Atmospheric structure

- Vertical structure
- Temperature profile

Troposphere

- Heated from below
- Top boundary called the *tropopause*

Troposphere

- Well-mixed vertically.
- Averages 11 km thick.
- Contains 80% of the mass of the atmosphere.
- All of our weather occurs in this part of the atmosphere.

Most clouds exist in the troposphere. Occasionally, violent updrafts penetrate cloud tops into the stratosphere. The flattened top of this cumulonimbus cloud is in the stratosphere.

Stratosphere

- Heated from above
- Top boundary is the stratopause

Stratosphere

- Warm air over cold air is very stable
 Very little vertical mixing
- 11-50 km in height
- 20% of mass of atmosphere
- Heated by absorption of UV by ozone Ozone peaks at 25 km (ozone layer)

Mesosphere

- 🥺 50-85 km
- 99.9% of the *rest* of the atmosphere (by mass)
- No ozone layer; heated from below
- Well-mixed vertically

Thermosphere

- Above 85 km
 - No defined upper threshold
- Temperatures can reach 1500°C
- Heated by O₂ absorbing solar radiation

Next lecture

Energy and radiationAhrens: Chapter 2