Hurricanes

GEOG/ENST 2331 Lecture 19 Ahrens: Chapter 15

Figure to right
Atlantic Hurricanes:
2015 (to Nov. 20)

Figure above

Typhoons: 2015 (to Nov. 20)

Hurricanes

- Tropical cyclones
- Dynamics
 - Formation
 - Structure
 - Movement
 - Dissipation

Ahrens: Fig. 1, p. 466 Hurricane Rita (Sept. 2005)

Tropical cyclones

- The most powerful of all storms
- Lesser intensity than tornadoes but larger size and longer life span makes hurricanes much more devastating
- Average diameters are approximately 600 km and central pressures average about 950 hPa but may be as low as 870 hPa

Tropical cyclone terminology

Ahrens: Fig. 3, p. 471 Hurricane Juan, 2003

Hurricane

- North American term
- Taino language

Typhoon

- Western Pacific term
- "Tai fung" (Chinese)
- "Tai-fu" (Japanese)
- "Great wind"

Severe Tropical Cyclone

Southern Hemisphere and Indian Ocean

Tropical Cyclones

Tropical cyclone genesis areas and related storm tracks

Ahrens: Fig. 15.11

SST Distribution

All regions of tropical cyclone development frequently exceed 27°C (80°F).

Definitions

- Tropical depression
 - Low pressure system in tropical ocean
- Tropical storm (Named storm)
 - Sustained winds of 60-120 km/h (18-33 m/s)
- Hurricane/Typhoon/Severe Tropical Cyclone
 - Sustained winds of 120-180 km/h (33-50 m/s)
 - Categories 1-2
- Major Hurricane/Typhoon/Cyclone
 - Sustained winds exceeding 180 km/h (50 m/s)
 - Categories 3-5

Saffir-Simpson Scale for Hurricane Strength

Herbert Saffir and Robert Simpson

Table 12–2 The Saffir-Simpson Scale						
Category	Pressure mb	Wind 9 km/hr	Speed mph	Storm S m	Surge ft	Damage
1	≥ 980	119–154	74–95	1–2	4–5	Minimal
2	965-979	155-178	96-110	2–3	6-8	Moderate
3	945-964	179-210	111-130	3–4	9–12	Extensive
4	920-944	211-250	131–155	4–6	13–18	Extreme
5	< 920	> 250	> 155	> 6	> 18	Catastrophic

A&B: Table 12-2

Annual frequency of hurricane-strength storms

Basin	Maximum	Minimum	Average
Atlantic	12	2	5.9
NH East Pacific	16	4	9.0
NH West Pacific	24	9	16.9
NH Indian	5	0	2.2
SH West Indian	11	2	6.7
SH East Indian	8	0	3.6
SH West Pacific	12	0	4.8
Global	64	36	48.3

Source: A&B Table 12-1

Hurricane-strength storms: 2015 compared to average

Basin	1 an 2	3 to 5	Total	Average
Atlantic	2	2	4	5.9
NH East Pacific*	5	10	15	9.0
NH West Pacific*	4	18	22	16.9
NH Indian	0	2	2	2.2
SH Indian	3	2	5	10.3
SH West Pacific	3	2	5	4.8
* Active Trop Global	Storm 17	36	53	48.3

To Nov. 20, 2015

Sources: Unisys; A&B Table 12-1

# Name	Date	Wind (knots)	Cat
1 TS ANA	08-11 MAY	40	
2 TS BILL	16-20 JUN	50	
3 TS CLAUD	ETTE 13-14 JUL	45	
4 Hurr-3 DA	NNY 18-24 AUG	100	3
5 TS ERIKA	25-29 AUG	45	
6 Hurr-1 FRE	ED 30 AUG-06 SEP	75	1
7 TS GRACE	05-09 SEP	45	
8 TS HENRI	09-11 SEP	35	
9 T D NINE	16-19 SEP	30	
10 TS IDA	18-27 SEP	45	
11 Hurr-4 JC	DAQUIN 28 SEP-08 OCT	135	4
12 Hurri-1 K	ATE 09-12 NOV	65	1

Cyclone ingredients

- Hurricanes form only over deep water layers with sea surface temperature (SST) in excess of 27°C
 - Poleward of about 20° (latitude), SSTs are usually too cold
- Coriolis force is an important contributor
 - Hurricanes do not form equatorward of 5°
- An unstable atmosphere is also necessary
- Strong vertical wind shear must be absent

Atlantic Basin Storm Development

- June through November
- Begins as a tropicalwave in the trade windsOriginates in East Africa
- One week to cross the Atlantic (15-35 km/h)

An easterly wave in surface winds Ahrens: Figure 15.1

Hurricane structure

- 4 10% of 'seedlings' develop into rotating storms
- Growth fuelled by rising warm, saturated air
- Group of thunderstorms becomes organized and self-sustaining

Hurricane dynamics

Rising air

Releases latent heat

Warms upper atmosphere

Causes upper air to diverge

Eye forms in the middle where air is sinking

Hurricane dynamics

- The horizontal pressure gradient changes with altitude
 - At about 7.5 km, pressures are equal inside and outside
 - From 7.5 km to the tropopause, pressures within the storm exceed those outside the storm
- Lower portion of the storm rotates cyclonically
- Upper portion rotates anticyclonically

Ahrens: Figure 15.3

The Eye and Eye Wall

- The eye is an area of descending air and light winds
 - Average 25 km in diameter
 - A shrinking eye indicates storm intensification
- The eye wall is comprised of the strongest winds, the largest clouds, and the heaviest precipitation
 - Rainfall rates as high as 2500 mm/day

Ahrens: Fig. 15.9

Atlantic Hurricane Movement

- Movement is dependent upon the stage of development
- In the Atlantic, storms that gain latitude *curve back* toward the northeast due to the influence of surface and upper-level westerlies

A&B: Figure 12-12

Hurricane Movement

Ahrens: Fig. 15.12

Lifespan of a tropical cyclone

- SST warmer water means more energy
- Upper wind structure strong upper level winds inhibit tropical cyclone longevity
 - El Niño more Pacific hurricanes, fewer Atlantic hurricanes
 - QBO quasi-biennial oscillation of the winds in the tropical stratosphere
- Landfall

Atlantic Hurricanes and ENSO

Cyclone dissipation

- Requires continuous supply of warm, moist air
 - Weakens over colder water
 - Weakens rapidly after landfall

- Slides back to tropical storm
 - Still carries a lot of rain

Hurricane hazards

- High winds
- Storm surge
- Flooding

Excess of 120 km/h

Category 4 (>210 km/h)

can blow the roofs off of houses

Category 5 (>250 km/h)

- can destroy houses

Ahrens: Fig. 15.14

Tornadoes

- Frequent feature of hurricanes
- Short duration
- May be triggered by landfall

A&B: Figure 12-15

Storm surge

- Rise in sea level
 - Piled up by heavy winds
 - Low pressure also produces a bulge
- Greatest potential for damage

Normal high tide

Category 3 [3.6-metre rise]

Category 5 [5.5-metre rise]

Ahrens: Figure 15.15

Heavy rain

- 25 cm/day under a passing storm
- Floods, landslides
 - Freshwater flooding is the deadliest aspect of hurricanes

- Hurricane Mitch (1998):
 - 85 cm over a few days in Honduras and Nicaragua
 - Over 19 000 deaths
 - Deadliest hurricane in at least 200 years

Canadian Weather Service

1873

- "Great Nova Scotia Cyclone"
- Category 2 hurricane off the Nova Scotia coast
- Over 500 people killed

1876

Telegraph lines set up to every major city in Eastern Canada.

Canadian Hurricanes

- Eastern provinces occasionally are hit by tropical storms – as far west as the Great Lakes
 - Great Lakes − 1 in 5 years
- Not an issue in the Western provinces
- Canadian Hurricane Centre
 - Halifax
 - Founded in 1986

Igor floods Newfoundland Source: CTV

Hurricane Hazel (1954)

October 15, 1954

121.4 mm at Toronto International Airport

Transitioned storm

Coming up

Course evaluations!

- Hurricane forecasting
 - More from Ahrens: Chapter 15
- Polar lows
 - From Ahrens: Chapter 12