Hurricanes

GEOG/ENST 2331 Lecture 19 Ahrens: Chapter 15

Figure to right Atlantic Hurricanes: 2015 (to Nov. 20)

Figure above Typhoons: 2015 (to Nov. 20)

Hurricanes

- Tropical cyclones
- Dynamics
 - Formation
 - Structure
 - Movement
 - Dissipation

Ahrens: Fig. 1, p. 466 Hurricane Rita (Sept. 2005)

Tropical cyclones

The most powerful of all storms

 Lesser intensity than tornadoes but larger size and longer life span makes hurricanes much more devastating

Average diameters are approximately 600 km and central pressures average about 950 hPa but may be as low as 870 hPa

Tropical cyclone terminology

Ahrens: Fig. 3, p. 471 Hurricane Juan, 2003 Hurricane

- North American term
- Taino language
- Typhoon
 - Western Pacific term
 - "Tai fung" (Chinese)
 - "Tai-fu" (Japanese)

"Great wind"

- Severe Tropical Cyclone
 - Southern Hemisphere and Indian Ocean

Tropical Cyclones

Tropical cyclone genesis areas and related storm tracks Ahrens: Fig. 15.11

SST Distribution

All regions of tropical cyclone development frequently exceed 27°C (80°F).

Definitions Tropical depression Low pressure system in tropical ocean

- Tropical storm (Named storm)
 Sustained winds of 60-120 km/h (18-33 m/s)
- Hurricane/Typhoon/Severe Tropical Cyclone
 Sustained winds of 120-180 km/h (33-50 m/s)
 Categories 1-2
- Major Hurricane/Typhoon/Cyclone
 - Sustained winds exceeding 180 km/h (50 m/s)
 - Categories 3-5

Saffir-Simpson Scale for Hurricane Strength

Herbert Saffir and Robert Simpson

Table 12–2 The Saffir-Simpson Scale							
Category	Pressure mb	Wind S km/hr	Speed mph	Storm S m	Surge ft	Damage	
1	≥ 980	119–154	74–95	1–2	4–5	Minimal	
2	965-979	155-178	96–110	2–3	6–8	Moderate	
3	945-964	179-210	111-130	3–4	9–12	Extensive	
4	920-944	211-250	131–155	4-6	13–18	Extreme	
5	< 920	> 250	> 155	> 6	> 18	Catastrophic	

A&B: Table 12-2

Annual frequency of hurricane-strength storms

Basin	Maximum	Minimum	Average
Atlantic	12	2	5.9
NH East Pacific	16	4	9.0
NH West Pacific	24	9	16.9
NH Indian	5	0	2.2
SH West Indian	11	2	6.7
SH East Indian	8	0	3.6
SH West Pacific	12	0	4.8
Global	64	36	48.3

Source: A&B Table 12-1

Hurricane-strength storms: 2015 compared to average

Basin	1 an 2	3 to 5	Total	Average
Atlantic	2	2	4	5.9
NH East Pacific*	5	10	15	9.0
NH West Pacific*	4	18	22	16.9
NH Indian	0	2	2	2.2
SH Indian	3	2	5	10.3
SH West Pacific	3	2	5	4.8
* Active Trop Global	Storm 17	36	53	48.3

To Nov. 20, 2015 Sources: Unisys; A&B Table 12-1

# Name Date	Wind (knots)	Cat
1 TS ANA 08-11 MAY	40	
2 TS BILL 16-20 JUN	50	
3 TS CLAUDETTE 13-14 JUL	45	
4 Hurr-3 DANNY 18-24 AUG	100	3
5 TS ERIKA 25-29 AUG	45	
6 Hurr-1 FRED 30 AUG-06 SEP	75	1
7 TS GRACE 05-09 SEP	45	
8 TS HENRI 09-11 SEP	35	
9 T D NINE 16-19 SEP	30	
10 TS IDA 18-27 SEP	45	
11 Hurr-4 JOAQUIN 28 SEP-08 OCT	135	4
12 Hurri-1 KATE 09-12 NOV	65	1

Cyclone ingredients

- Hurricanes form only over deep water layers with sea surface temperature (SST) in excess of 27°C
 - Poleward of about 20° (latitude), SSTs are usually too cold
- Coriolis force is an important contributor
 Hurricanes do not form equatorward of 5°
- An unstable atmosphere is also necessary
- Strong vertical wind shear must be absent

Atlantic Basin Storm Development

- June through November
- Begins as a tropical wave in the trade winds
 Originates in East Africa
- One week to cross the Atlantic (15-35 km/h)

An easterly wave in surface winds Ahrens: Figure 15.1

Hurricane structure

- 10% of `seedlings' develop into rotating storms
- Growth fuelled by rising warm, saturated air
- Group of thunderstorms becomes organized and self-sustaining

Hurricane dynamics

Rising air

Releases latent heat

Warms upper atmosphere

Causes upper air to diverge

Eye forms in the middle where air is sinking

Hurricane dynamics

- The horizontal pressure gradient changes with altitude
 - At about 7.5 km, pressures are equal inside and outside
 - From 7.5 km to the tropopause, pressures within the storm exceed those outside the storm
- Lower portion of the storm rotates cyclonically
- Upper portion rotates anticyclonically

Ahrens: Figure 15.3

The Eye and Eye Wall

- The eye is an area of descending air and light winds
 - Average 25 km in diameter
 - A shrinking eye indicates storm intensification
- The eye wall is comprised of the strongest winds, the largest clouds, and the heaviest precipitation
 - Rainfall rates as high as 2500 mm/day

Ahrens: Fig. 15.9

Atlantic Hurricane Movement

- Movement is dependent upon the stage of development
- In the Atlantic, storms that gain latitude *curve back* toward the northeast due to the influence of surface and upper-level westerlies

A&B: Figure 12-12

Hurricane Movement

Ahrens: Fig. 15.12

Lifespan of a tropical cyclone

- SST warmer water means more energy
- Upper wind structure strong upper level winds inhibit tropical cyclone longevity
 - El Niño more Pacific hurricanes, fewer Atlantic hurricanes
 - QBO quasi-biennial oscillation of the winds in the tropical stratosphere
- 🕸 Landfall

Atlantic Hurricanes and ENSO

1997 – El Niño year

1998 – Non-El Niño year

Cyclone dissipation

- Requires continuous supply of warm, moist air
 - Weakens over colder water
 - Weakens rapidly after landfall

Slides back to tropical storm
 Still carries a lot of rain

Hurricane hazards

High winds
Storm surge
Flooding

High winds Excess of 120 km/h

Category 4 (>210 km/h) - can blow the roofs off of houses

Category 5 (>250 km/h) - can destroy houses

Ahrens: Fig. 15.14

- Frequent feature of hurricanes
- Short duration
- May be triggered by landfall

A&B: Figure 12-15

Storm surge

Rise in sea level

- Piled up by heavy winds
- Low pressure also produces a bulge
- Greatest potential for damage

Normal high tide

Category 1 [1.2-metre rise]

Category 3 [3.6-metre rise]

Category 5 [5.5-metre rise]

Ahrens: Figure 15.15

Heavy rain

25 cm/day under a passing storm

- Floods, landslides
 - Freshwater flooding is the deadliest aspect of hurricanes

Hurricane Mitch (1998):

- 85 cm over a few days in Honduras and Nicaragua
- Over 19 000 deaths
- Deadliest hurricane in at least 200 years

Canadian Weather Service

1873

- "Great Nova Scotia Cyclone"
- Category 2 hurricane
 off the Nova Scotia
 coast
- Over 500 people killed

1876

 Telegraph lines set up to every major city in Eastern Canada.

Canadian Hurricanes

- Eastern provinces occasionally are hit by tropical storms – as far west as the Great Lakes
 - Great Lakes 1 in 5 years
- Not an issue in the Western provinces
- Canadian Hurricane Centre
 Halifax
 - Founded in 1986

Igor floods Newfoundland Source: CTV

Hurricane Hazel (1954)

October 15, 1954

121.4 mm at Toronto International Airport

Transitioned storm

Coming up
Course evaluations!

Hurricane forecasting
 More from Ahrens: Chapter 15
 Polar lows
 From Ahrens: Chapter 12