

Air Masses and Fronts

GEOG/ENST 2331 – Lecture 16

Ahrens: Chapter 11

Air Masses and Fronts

- Air masses
 - Source regions
 - Classification
 - Modification
- A large body of air whose properties of temperature and moisture are fairly uniform in any horizontal direction at any given altitude.
- Typically air masses cover many thousands of square kilometres
- Fronts

Air masses

- The temperature and moisture of air depend on continuous exchanges with the surface
- Temperature: energy inputs vs. energy losses
- Moisture: evaporation vs. precipitation

Source region

- Must be large, homogenous surface area
- Air needs to remain in place for a substantial time
- Typical source regions for North America include adjacent oceans, Gulf of Mexico, the Arctic and sub Arctic and the American/Mexican deserts

 Ontario is not a good source region; nor are most mid-latitudes – conditions change too frequently

Air mass classification

- c land (continental)
- m water (maritime)
- A high Arctic latitudes
- P polar latitudes
- T tropical latitudes

Air mass classification

Source Region	Arctic (A)	Polar (P)	Tropical (T)
Land (continental)	cA Dry, very cold	cP Dry, cold	cT Dry, hot
	Stable Ice and snow	Stable	Stable aloft Unstable surface
Water (maritime)	mA Moist, cold Unstable	mP Moist, cool Unstable	mT Moist, warm Usually unstable

Air masses are not confined to their source regions and migrate to regions with less extreme weather conditions.

- 1. The region to which the air mass migrates undergoes major changes in temperature and humidity
- 2. The air mass itself becomes more moderate

Winter

Ahrens: Figure 11.2a

Ahrens: Figure 11.2b

Modified Air Masses

Ahrens: Figure 11.7

Lake effect precipitation

Ahrens: Fig. 1, p. 328

Lake effect snow in the Great Lakes

Ahrens: Fig. 2, p. 329

Fronts

- Fronts
 - Warm and cold
 - Stationary
 - Occluded
 - Drylines

Station model for meteorology

- Temperature
- Dew point
- Sea Level
 Pressure
- Pressure trend
- Wind direction

See Appendix B!

SELECTED WEATHER MAP SYMBOLS

Cloud Cover

Full, Half, Quarter, etc (shaded accordingly)

Winds

Almost Calm -(< 1 m/s)1 to 4 m/s -5 to 6 m/s 7 to 8 m/s 9 to 11 m/s 12 to 14 m/s 🖖 15 to 16 m/s W____ 17 to 18 m/s 👊

19 to 20 m/s WL____

Precipitation

Drizzle 9 or 99

Light Rain •

Moderate Rain Shower

Heavy Rain

Area of continuous /////
Precipitation

Moderate Snow *

Snow Shower

Cold Fronts

Ahrens: Active Fig. 11.15
The vertical displacement of air along
a cold front boundary; steep profile (1:50 to 1:100)

Cold Front

(a)

Identifying cold fronts

Strong temperature
gradient
Humidity change
Shift in wind direction
Pressure change
Clouds and precipitation
patterns

Ahrens: Fig. 11.13

WARM FRONTS

Overrunning leads to extensive cloud cover along the gently sloping surface of cold air.

Ahrens: Fig. 11.19

Warm front identification

- Here, mT overrides mP
- Profile 1:150 1:300
- Gentle precipitation (drizzle)

Ahrens: Active Fig. 11.18

Stationary fronts

- Boundary between fronts stalls
- Stable but with strong horizontal wind shear
- Quite common along the Polar Front
 - Boundary between Polar and Ferrel cells

Midlatitude cyclone

Kink in the polar front
Cold and warm fronts
rotate around a central low
Wedge of warm air to the
south

OCCLUDED FRONT

TROWAL: TRough Of Warm Air Aloft

Ahrens: Fig. 11.20

Drylines

- Boundaries between dry and moister air are called drylines
- They frequently occur throughout the US Great Plains and are an important contributor to storm development

Ahrens: Fig. 6, p. 344

Next lecture

- Midlatitude cyclones
- Ahrens: Chapter 12