

Cloud Formation

GEOG/ENST 2331 – Lecture 11 Ahrens et al. Chapters 5 & 6

Course Stuff

Midterm

Midterm: October 28Lab quiz: Following week

Last lecture

- Lifting mechanisms
 - Orographic lifting
 - Frontal lifting
 - Convergence
 - Convection
- Atmospheric stability

Cloud formation

- Changing atmospheric stability
 - Surface warming
 - **Advection**
 - Lifting
- Condensation
- Types of clouds

Causes of Instability

- DALR is 10°C/km and SALR is 6°C/km
 - Conditional stability when ELR > $6^{\circ}C/km$
 - Absolute instability when ELR > $10^{\circ}C/km$

Two mechanisms for increasing the lapse rate:

- 1. Temperature change
 - a. Heat the surface air
 - b. Cool the upper air
- 2. Potential instability
 - Lifting of a layer of air

1a Surface Warming

0 m 17° C \longrightarrow 22° C

1b Cooling aloft

7°C/km 12°C/km

Example: Cool air advection

- Initial lapse rate: 2.2°C / km (absolutely stable)
- Final lapse rate: $7^{\circ}C / 1.4 \text{ km} = 5^{\circ}C / \text{ km}$ (close to conditionally unstable)
- Layer of air expands, so top rises farther and cools more than bottom

Ahrens: Fig. 6.13

2b Potential Instability

Elevation (m)

Ahrens: Fig. 6.14

Potential Instability

Top of layer cools at DALR

Bottom cools at SALR

Initially, -3° C over 450 m = -6.7° C / km

Finally, 9° C over 600 m = 15° C / km

Entrainment

Rising parcel creates turbulence Small eddy circulations

Mixes air from the environment into the parcel

- Very likely unsaturated
- Evaporating water cools the parcel back down
- Most evident at the cloud boundaries

Stable air

- Eventually a rising parcel will encounter stable air
- A ``lid"
- Stops rising
 - Lag while T catches up
 - May continue briefly due to momentum

A&B: Figure 6-12

Radiation inversions

Surface cools very quickly at night Becomes colder than air above it

Temperature profile is inverted

Frontal inversions

Subsidence inversion

- Warm air is less dense
- Lee side wind may be unable to push aside cold air

Development of a cumulus cloud

Ahrens: Active Fig. 6.18

Condensation

- Not as easy as it sounds
- Molecules must find each other and bond together
- Easily separated again by collisions with other air molecules

Curvature

High curvature means water molecules are more exposed to air molecules > Note little curvature over 20 μ m distance

Radius = 20 μm

Radius = 1 mm (1000 µm)

A&B: Figure 5-11

© 2010 Pearson Education, Inc.

Cloud condensation nuclei (CCN)

Solid particles provide a surface to bond onto
 Initially; eventually they dissolve

Solution effect

- Molecules of the dissolved substance don't evaporate
- Some of the water molecules along the surface are replaced
- Rate of evaporation is reduced

Cloud condensation nuclei

- Hygroscopic material aids droplet formation
 CCN are roughly 0.2 µm
 - ${\scriptstyle \blacksquare}$ Cloud droplets are roughly 20 μm or 0.02 mm
- Supersaturation occurs if no CCN are available
 - RH can exceed 100% *supersaturation*
 - Liquid molecules evaporate again before they can collect together and form droplets

Supersaturation

Ahrens: Fig. 7.3

Lecture outline

- Changing atmospheric stability
- Limits on instability
- Condensation
- Types of clouds
 Nomenclature
 Pretty pictures
 Unusual clouds

Cloud Nomenclature

- 🕸 Stratus, strato-
 - Layer clouds
- Cumulus, cumulo-
 - `puffy' clouds
- Alto
 - Middle clouds (2000 7000 m)
- Cirrus, cirro-
 - High clouds (above 7000 m)
- Nimbus, nimbo-
 - Rain clouds

Cloud types

Ahrens: Fig. 5.27

Cloud Nomenclature

Strato (layered)

- Stratus
- Nimbostratus
- Altostratus
- Cirrostratus

• FIGURE 5.27 A generalized illustration of basic cloud types (genera) based on height above Earth's surface and the extent of vertical development.

Altostratus

Cloud Nomenclature

Cumulo (heaped)

- Cumulus
- Stratocumulus
- Altocumulus
- Cirrocumulus
- Cumulonimbus

• FIGURE 5.27 A generalized illustration of basic cloud types (genera) based on height above Earth's surface and the extent of vertical development.

Stratocumulus

Altocumulus

++++++

Cirrocumulus

Cumulus humilis 'Fair Weather'

Cumulus congestus

Cumulonimbus

Ahrens: Fig. 5.28

Ahrens: Fig. 6.24

Banner clouds

Nacreous Clouds – Stratosphere

Noctilucent Clouds - Mesosphere

Next lecture

- Precipitation
- Ahrens: Chapter 7