

Cloud Formation

GEOG/ENST 2331 – Lecture 11 Ahrens et al. Chapters 5 & 6

Course Stuff

Midterm

Midterm: October 28

Lab quiz: Following week

Last lecture

- Lifting mechanisms
 - Orographic lifting
 - Frontal lifting
 - Convergence
 - Convection
- Atmospheric stability

Cloud formation

- Changing atmospheric stability
 - Surface warming
 - Advection
 - Lifting
- Condensation
- Types of clouds

Causes of Instability

- DALR is 10°C/km and SALR is 6°C/km
 - Conditional stability when ELR > 6°C/km
 - Absolute instability when ELR > 10°C/km
- Two mechanisms for increasing the lapse rate:
 - 1. Temperature change
 - a. Heat the surface air
 - b. Cool the upper air
 - 2. Potential instability
 - Lifting of a layer of air

1a Surface Warming

7°C/km

12°C/km

1000 m

10°C

10°C

0 m

17°C

____> 22°C

1b Cooling aloft

7°C/km

12°C/km

1000 m

10°C

5°C

0 m

17°C

2a Potential instability

Expansion

- Initial lapse rate: 2.2°C / km (absolutely stable)
- Final lapse rate: 7°C / 1.4 km = 5°C / km (close to conditionally unstable)
- Layer of air expands, so top rises farther and cools more than bottom

Ahrens: Fig. 6.13

2b Potential Instability

Ahrens: Fig. 6.14

Potential Instability

Top of layer cools at DALR

Bottom cools at SALR

Initially, -3° C over 450 m = -6.7° C / km

Finally, 9° C over 600 m = 15° C / km

Entrainment

- Rising parcel creates turbulence
 - Small eddy circulations
- Mixes air from the environment into the parcel
 - Very likely unsaturated
 - Evaporating water cools the parcel back down

Most evident at the cloud boundaries

Stable air

- Eventually a rising parcel will encounter stable air
- A "lid"
- Stops rising
 - Lag while T catches up
 - May continue briefly due to momentum

A&B: Figure 6-12

Radiation inversions

- Surface cools very quickly at night
 - Becomes colder than air above it
 - Temperature profile is inverted

Frontal inversions

Subsidence inversion

- Warm air is less dense
- Lee side wind may be unable to push aside cold air

Development of a cumulus cloud

Ahrens: Active Fig. 6.18

Condensation

- Not as easy as it sounds
- Molecules must find each other and bond together
- Easily separated again by collisions with other air molecules

Curvature

High curvature means water molecules are more exposed to air molecules

A&B: Figure 5-11

Cloud condensation nuclei (CCN)

- Solid particles provide a surface to bond onto
 Initially; eventually they dissolve
- Solution effect
 - Molecules of the dissolved substance don't evaporate
 - Some of the water molecules along the surface are replaced
 - Rate of evaporation is reduced

Cloud condensation nuclei

- Hygroscopic material aids droplet formation
 - CCN are roughly 0.2 μm
 - Cloud droplets are roughly 20 μm or 0.02 mm

- Supersaturation occurs if no CCN are available
 - RH can exceed 100% supersaturation
 - Liquid molecules evaporate again before they can collect together and form droplets

Supersaturation

Ahrens: Fig. 7.3

Lecture outline

- Changing atmospheric stability
- Limits on instability
- Condensation
- Types of clouds
 - Nomenclature
 - Pretty pictures
 - Unusual clouds

Cloud Nomenclature

- Stratus, strato-
 - Layer clouds
- Cumulus, cumulo-
 - 'puffy' clouds
- Alto
 - Middle clouds (2000 7000 m)
- Cirrus, cirro-
 - High clouds (above 7000 m)
- Nimbus, nimbo-
 - Rain clouds

Cloud types

Ahrens: Fig. 5.27

Cloud Nomenclature

- Strato (layered)
- Stratus
- Nimbostratus
- Altostratus
- Cirrostratus

• FIGURE 5.27 A generalized illustration of basic cloud types (genera) based on height above Earth's surface and the extent of vertical development.

Altostratus

Cloud Nomenclature

Cumulo (heaped)

- Cumulus
- Stratocumulus
- Altocumulus
- Cirrocumulus
- Cumulonimbus

• FIGURE 5.27 A generalized illustration of basic cloud types (genera) based on height above Earth's surface and the extent of vertical development.

Cumulus

Stratocumulus

Cirrocumulus

Cumulus humilis 'Fair Weather'

Cumulus congestus

Cumulonimbus

Lenticular Clouds

Ahrens: Fig. 5.28

Ahrens: Fig. 6.24

Banner clouds

Nacreous Clouds – Stratosphere

Noctilucent Clouds - Mesosphere

Next lecture

- Precipitation
- Ahrens: Chapter 7