LECTURE 7: MAY 15, 2014

ECOSYSTEMS AND MATTER CYCLING

BIOGEOCHEMICAL CYCLES

Text Reference: Dearden and Mitchell (2012), Ch. 4, pp. 114-135

Geography/Environmental Studies 1120 T. Randall, Lakehead University, SA 2014

Upcoming:

- May 21 (Wed):
 - Field Trip (Atlantic St WWTP)
 - (To be confirmed)
- May 22 (Thurs):
 - Midterm exam
 - Format

□ Today:

- (discussion) de-brief on field trip to
 Waterfront and downtown north core
- (lecture) biogeochemical cycles
- Break (~ 12)
- (lecture) biogeochemical cycles
- (discussion: return of paper proposals)
- (discussion: exam format and length)

Macro / Micro Nutrients

Major Macronutrients (>1% dry organic weight)			Relatively Minor Macronutrients (0.2–1% dry organic weight)		Micronutrients (<0.2% dry organic weight)	
Name of Element	Symbol	Name of Element	Symbol	Name of Element	Symbol	
Carbon	С	Calcium	Ca	Aluminum	Al	
Hydrogen	Н	Chlorine	CI	Boron	В	
Nitrogen	N	Copper	Cu	Bromine	Br	
Oxygen	0	Iron	Fe	Chromium	Cr	
Phosphorus	Р	Magnesium	Mg	Cobalt	Co	
		Potassium	K	Fluorine	F	
		Sodium	Na	Gallium	Ga	
		Sulphur	S	lodine	1	
				Manganese	Mn	
				Molybdenum	Мо	
				Selenium	Se	
				Silicon	Si	
				Strontium	Sr	
				Tin	Sn	
				Titanium	Ti	
				Vanadium	V	
				Zinc	Zn	

Carbon / Nitrogen Stores

Figure 4.1 | Each nutrient is stored and released by components of the Earth's systems. Different nutrients follow slightly different paths through the systems and are stored and released at different rates.

Table 4.2 | Approximate Distributions of Carbon and Nitrogen in Temperate and Tropical Rain Forests

	Tropical Rain Forest	Temperate Rain Forest
Carbon in vegetation	75%	50%
Carbon in litter and soil	25%	50%
Nitrogen in biomass	50%	6%
Nitrogen in biomass above ground	44%	3%

- Gaseous Cycles (e.g., Nitrogen, Carbon)
 - Have most of their matter in the atmosphere
- Sedimentary Cycles (e.g. Phosphorus, Sulphur)
 - Hold most of their matter in the lithosphere;
 - Operate more slowly
 - Elements locked in geological formations for millions of years

Hydrosphere
Reservoir
(water)

Lithosphere
Reservoir
(soil & rocks)

Atmosphere

Reservoir

Figure 4.1 | Each nutrient is stored and released by components of the Earth's systems. Different nutrients follow slightly different paths through the systems and are stored and released at different rates.

Sedimentary Cycles

Phosphorus (P)
Sulphur (S)

Rock Cycle block diagram

Key Terms:

- weathering;
- erosion & transport;
- sedimentation;
- burial & lithification;
- subduction zone;
- uplift;
- metamorphosis;
- igneous processes (intrusive and extrusive forms);
- fresh rock to surface

Source: The Geological Society – United Kingdom http://www.geolsoc.org.uk/ks3/gsl/education/resources/rockcycle.html

Phosphorus (P) – importance of...

- essential for metabolic energy use;
- not very common → tendency of species to store and re-use P rather than outright discard;
- P is a dominant 'limiting factor' in ecosystems;
- agricultural
 productivity relies very
 heavily on external
 inputs of P

Source: www.periodni.com-

Phosphorus Cycle – key terms / concepts

- 5. main reservoir is ROCK;
- uplift and weathering → soil;
- uptake by plants, then→ higher trophic levels;
- plant decay / animal wastes and bones key return flow of P;
- P enters streams & rivers → lakes & oceans;
- productive estuarine and shallow coastal zones with high P

Figure 4.2 | The phosphorus cycle.

Sulphur (S) – importance of...

- like all macronutrients, an essential component for life;
- a building component of proteins;
- S not often a 'limiting factor' in ecosystems;

Source: www.periodni.com-

Sulphur Cycle

– key terms / concepts

11

- also has an 'atmospheric component'; thus better recycling potential (or rates);
- 6. S not available in the lithosphere;
- more highly dependent on microbial organisms for movement in the 'cycle' (unlike P)
- bacteria transform S into various forms in the soil;
- transformations either under aerobic or anaerobic conditions (with or without Oxygen) leading to:
 - H_2S (gas) \rightarrow atmosphere
 - □ 'sulphate salts' → remain in the soil
- interaction of S cycle with other nutrient cycles creates added complexity (e.g. O, N)
 - e.g., SO₂ formation, acid rain

Gaseous Cycles

Nitrogen (N)
Carbon (C)

Nitrogen (N) – importance of...

- essential for life;
- essential component of chlorophyll, proteins and amino acids;
- atmosphere contains
 78% N₂ gas as well as other gaseous N forms
 (e.g, NO₂ nitrogren dioxide, NH₃ ammonia)
- excessive N equates to many environmental issues such as:
 - acid deposition;
 - ozone depletion;
 - global climate change;
- N accumulation in the hydrosphere → "eutrophication"

Source: www.periodni.com-

Nitrogen Cycle

– key terms / concepts

14

- N cycles between atmosphere and lithosphere; most importantly via biological activity;
- most organisms cannot directly access atmospheric N (they need assistance of nitrogen fixators)

8. <u>Nitrogen Fixation:</u>

- bacteria transform atmospheric N into various forms in the soil;
- NH₃ (ammonia)
- nitrates and 'ammonia salts' NH₄ + (which are readily soluble)

Nitrogen Cycle

key terms / concepts

15

- N is quickly depleted in soil, especially in lands under cultivation;
- 10. farmers 'rotate' in crops like alfalfa and clover, which can build up nitrates in soils;
- early colonizers in ecological succession are also key nitrogen fixator species to provide nutrients for subsequent species
- Nitrification and Denitrification:

Nitrification and Denitrification:

Carbon (C) – importance of...

- 1. although a small fraction of the atmosphere (CO₂ <0.03%), it is the main C reservoir available to biosphere;
- building block for all necessary fats, proteins and carbohydrates that are needed to sustain life;
- excessive CO₂
 equates to global climate change;

Source: www.periodni.com-

Carbon Cycle

– key terms / concepts

- 4. <u>photosynthesis</u>: uptake of CO₂ from atmosphere and emit O₂;
- 5. carbon incorporated into the 'food chain' (carbohydrates passed along)
- residence times of C in the biosphere vary:
 - old growth forests (100s of years)
- returns CO₂ to the atmosphere
- decay from dead organisms releases both CO₂ and Methane (CH₄) both greenhouse gases

Figure 4.7 | The carbon cycle.

Carbon Cycle

– key terms / concepts

- residence times of C in the lithosphere:
 - buried organisms in peat bogs (prior to decomposing)
 - fossil fuels contain millions of years of photosynthetic energy → which we are releasing much more rapidly than they are being taken up by oceans and other 'sinks';

Figure 4.7 | The carbon cycle.

The Hydrological Cycle

Hydrological Cycle – importance of...

- necessary for life;
- $_{2}$ humans are 70% $H_{2}0$;
- Earth is unique in its having liquid water (unlike Mars, Venus)
- most is stored in oceans;
- reservoirs varies
 (some residence times
 in deep oceans is
 30,000 + years; while
 atmosphere is 9-12
 days)

Table 4.3 Global Water Storage						
Reservoir	Average Renewal Rate	Per Cent of Global Total				
World oceans	3,100 years	97.2				
Ice sheets and glaciers	16,000 years	2.15				
Groundwater	300-4,600 years	0.62				
Lakes (freshwater)	10-100 years	0.009				
Inland seas, saline lakes	10-100 years	0.008				
Soil moisture	280 days	0.005				
Atmosphere	9-12 days	0.001				
Rivers and streams	12-20 days	0.0001				

Source: www.periodni.com-

Hydrological Cycle – key terms / concepts

- precipitation
- interception
- evaporation
- evapotranspiration
- infiltration (to gdw)
- condensation (onto 'condensation nuclei') and forms clouds

Figure 4.8 | The hydrological cycle. Water moves through the hydrological cycle as a liquid, as a vapour, and as snow.

Groundwater Flow – key terms / concepts

** Augment with board sketch **

- water table
- aquifer
- permeability
- recharge zone
- confined vs unconfined aquifers
- piezometric surface
- artesian well

Figure 4.9 | Groundwater flow.

Figure 4.10 | Average annual rain and snow for Canada (cm). Source: Phillips (1990: 210).

- maritime areas wetter especially West Coast
- low precipitation in Prairies
- "polar desert"

- Canada is 8% fresh water lakes;
- Despite apparent abundance,
 75% of surface water discharge is to Arctic watersheds; while
 90% of the population is within
 300 km of the US border;
- Our influence on the hydrological cycle and other biogeochemical cycles to be covered next time.

Table 4.4 Mean Annual Stream Discharge to the Oceans for Selected Canadian Rivers					
River	Watershed Area (km²)	Discharge (m ³ s ⁻¹)			
Saguenay	90,100	1,820			
St Lawrence	1,026,000	9,860			
Churchill	281,300	1,200			
Nelson	722,600	2,370			
Albany	133,900	1,400			
Koksoak northern QC	133,400	2,550			
Yukon (at Alaska border)	297,300	2,320			
Fraser	219,600	3,540			
Columbia (at Washington border)	154,600	2,800			
Mackenzie	984,195	10,800			
Source: Briggs et al. (1993: 206).					

Looking Ahead to the next lectures

May 20: Ecosystems & Material Cycling: Human Activity & Impacts on Biogeochemical Cycles

Read ahead (Chpt. 4, pp. 114 \rightarrow)

May 21:(Field trip, to be confirmed): Atlantic Street WWTP, East End and Neebing Spillway

May 22: Mid-term exam (covers to end of Chapter 4)

May 26 & 27: Planning and Management: Adaptive Management and Impact & Risk Assessment

* Case Study: Skagit Valley Landslide

Read ahead (Chpt. 6, pp. 172 \rightarrow 197)

References

Dearden, P and Mitchell, B. 2012. *Environmental Change and Challenge*, Fourth Edition, Don Mills, Ontario: Oxford University Press {Chapter 4: 'Ecosytems and Matter Cycling'}