THE EARTH'S BIOSPHERE

- Energy Flows in Ecological Systems
- Ecosystem Structure
- Productivity and Biodiversity

Producers and Consumers

- Organisms with the ability to capture energy and manufacture matter are known as autotrophs, or producers
- All other organisms are known as heterotrophs, or consumers
- There are two kinds of autotrophs: phototrophs and chemoautotrophs
- Phototrophs get their energy from light, while chemoautotrophs obtain their energy from chemicals in the environment

Food Chains

- •Some of the energy captured by autotrophs is passed on to other organisms, the consumers, through a **food chain**
- Each level of the food chain is called a **trophic level**
- •Herbivores eat producers and are the energy source for higher-level consumers, or carnivores
- •Omnivores, such as humans, raccoons, sea anemones, and cockroaches, can get their energy from multiple trophic levels

Food Chains

•Decomposer food chains are just as important as grazing food chains

•These chains are based on dead organic material called **detritus**, which is high in potential energy but difficult for typical consumer organisms to digest

•Decomposer food chains play a key role in breaking down plant and animal material into products such as carbon dioxide, water, and inorganic forms of phosphorus and nitrogen and other elements

Biotic Pyramids

•he second law of thermodynamics explains how energy flows from trophic level to trophic level, with a loss of usable energy at each transformation

•Energy efficiency: portion of energy entering system that is transformed into useful form of energy or work

In natural food chains may be as low as 1%; 90% lost at each trophic level

•Some ecosystems have an inverted **biomass pyramid** (natural grasslands, oceans)

Productivity

•The rate at which energy is changed into biomass; usually expressed in kilocalories per square metre /year

•Gross primary productivity (GPP) is the overall rate of biomass production

•Cellular respiration (R), must be subtracted from the GPP to reveal the **net primary productivity** (**NPP**); the amount of energy available to heterotrophs

•The most productive ecosystems are wetlands and tropical rainforests; the least are deserts, the Arctic and open Ocean

•Humans use 40% of all terrestrial NPP for their own use

Productivity

- Measurements can also be made of net community productivity (NCP), including heterotrophic and autotrophic respiration
- Over time, natural systems mature towards maximization of NCP
- Auxiliary energy flows allow some ecosystems and sites to be very productive
 - For example, tidal energy in an estuary brings in nutrients and helps dissipate wastes

- The ecosphere can be broken down into smaller units
- At the smallest level is the individual organism
- A group of individuals of the same species is a population
- All the populations of all species in an environment are known as a **community**

- **Ecosystems** are collections of communities interacting with their physical environments
- Ecosystems are *open systems* in that they exchange material and organisms with other ecosystems
- *Ecozones* are groups of ecosystems with similar dominant vegetation and animal communities
- Many ecozones taken together and classified according to their dominant vegetation and reflecting animal adaptations to predominate climatic conditions form a **biome**

Abiotic Components

•Abiotic components play an important role in determining how the living or biotic components of ecosystems are distributed

•Key abiotic factors: light, temperature, wind, water, and soil characteristics

Abiotic Components

•Range of tolerance: the range of conditions that different organisms can tolerate and still survive

•Optimum range: the range of conditions that is ideal for a species

•Zone of physiological stress: conditions can be tolerated by certain individuals within the population, but are not optimal, so fairly few individuals can exist

Biotic Components

•According to the **competitive exclusion principle**, no two species can occupy the same niche in the same area

- Fundamental niche: potential range of conditions a species can occupy
- > Realized niche: the range actually occupied

•**Specialist species** have narrow niches and are vulnerable to environmental change, e.g., Panda

•Generalist species may have a very broad niche, e.g., black bear, coyote

Biotic Components

- Competition
 - Intraspecific competition occurs among members of the same species; regulates population size; may lead to establishment of territories
 - Interspecific competition occurs between different species
 - Resource partitioning: resources are used at different times, or in different ways, by species with overlaps of fundamental niches, possibly reducing competition

Biotic Components

•Biotic Relationships (**Optimal foraging theory**)

- Parasitism: a special type of predator—prey relationship, where the predator lives on or in its prey (host)
- Mutualism: the relationship benefits both species
 e.g., nitrogen-fixing bacteria and their host plants
- Commensalism: interactions that seem to benefit only one partner but do not harm the other
 - ≻ e.g., epiphytes

Biodiversity

Biodiversity is the result of all the interactions between abiotic and biotic factors throughout evolution

- Genetic diversity (richness): variability in genetic makeup among individuals of the same species; the ultimate source of biodiversity at all levels
- Species diversity (richness): the total number of species in an area
 - Global estimates 5 to 20 million
- Ecosystem diversity (richness): the variety of ecosystems in an area.

Implications

- All of the Earth's inhabitants are interlocked in environmental systems that depend on one another for survival
- Basic scientific laws dictate that society must transform itself from a throwaway society to one in which energy efficiencies are improved and matter flows reduced
- A species may have a wide range of tolerance to some factors but a very narrow range for others

Implications

- Species with the largest ranges of tolerance for all factors tend to be the most widely distributed (e.g., cockroaches and rats)
- Many weed and pest species are successful because of their large range of tolerance
- Response to growth factors is not independent
- Tolerance for different factors may vary through life cycles
- Some species can adapt to gradually changing conditions for some factors, up to a point

Species-area Relationship on Arithmetic Axes

The **species-area curve** is a graph showing the number of species found in a defined area of a particular habitat or of habitats of different areas.

- Usually constructed for a single type of organism (I.e. vascular plants or a trophic level).
- Rarely constructed for all types of organisms
- The species-area relationship is sometimes called as *species-area theory*.

A Tragedy of the Commons:

The Newfoundland Cod Fisheries

The Atlantic Cod (Gadus morhua)

DORY: Inland seasonal

1956-1977 inshore catch plummeted by 2/3

- 200 mile limit too late

Large Hydraulic Vessels:

-Offshore

-Hundreds of tonnes of fish to fish processing

Table 9.4	Atlantic Canada and Newfoundland Fisheries Landings, 1990–2001 (million tonnes)		
Year	Newfoundland	Atlantic Canada	Per cent Newfoundland
1990	245,896	395,266	62.2
1991	178,687	309,031	57.8
1992	75,138	187,804	40.0
1993	37,068	76,644	48.4
1994	2,292	22,719	9.8
1995	863	12,438	6.9
1996	1,147	15,541	7.4
1997	12,317	29,899	41.2
1998	22,764	37,894	60.0
1999	38,663	55,527	69.6
2000	30,216	46,177	65.4
2001	23,774	40,440	58.8

Source: Fisheries and Oceans Canada (2003).

Summary

• The overestimation and overexploitation of renewable resources can have direct consequences to social, economic and political systems that rely on the integrity of the environment

• The *Tragedy of the Commons* is a dilemma in which multiple individuals acting independently in their own self-interest can ultimately destroy a shared resource even where it is clear that it is not in anyone's long term interest for this to happen.