LECTURE 2_10: FEB. 6, 2014 AGRICULTURE

CURRENT AGRICULTURAL SYSTEMS AND THEIR IMPACTS

Text Reference: Dearden and Mitchell (2012), Ch. 10, pp. 332-347.

T. Randall, Lakehead University, WA 2014

From: Dearden and Mitchell (2012)

- Preamble challenges around feeding an increasing population
- Arable Land
- Impacts of Global Climate Change
- Intensification of Production
- Competition for viable agricultural land
 - With urbanization
 - With bio-fuel production

Rise in global population

THE WORLD AT SEVEN BILLION THE WORLD'S GROWING POPULATION WORLD POPULATION 10 Years 0-2150 10 Years 1750-2050 100 World Population in billions Annual Pop. Change ä in billions in millions 9 bln 8 bln 80 7 bin 0 1000 2000 6 bln 60 It took less than a century to Population reach the next billion people 5 bln 20 Projections 2050 after reaching the first billion billions High 10.6 in 1804. Since 1960, the 15 4 bin world population has Population if policy agreements fail 40 doubled. With recent figures Medium 10 putting the annual number Low 3 bln of people added to the world B B B bln population at 80 million per Population if all UN-agreed population 2010 2100 year, the world adds the policies are implemented numerical equivalent of 2 i gill Jäne 20 2 bln another United States to its population every four years Year next billion reached* 1927 1959 1974 1987 1998 2011 2025 2043 15 13 11 13 14 Years after previous billion 32 18 0 * Based on UN estimates 1750 1800 1850 1900 1950 2000 2050 POPULATION DENSITY FERTILITY RATES Africa 2000 Births per 1,000 people Medium-range Asia astimatos 50 Latin Am, 8. Caribbean 40 Europe North America persons/sq km Oceania 30 0 2 20 2.<5 5 - <15 15 - <15 10 100 - <1.000 2000 1000+ 1950 2100

http://i.dailymail.co.uk/i/pix/2011/10/26/article-2053652-0E815BCE00000578-

Sources: U.S. Census Bureau, United Nations, Socioeconomic Data and Applications Center, Populationaction.org

C REUTERS

Graphic: Brice Hall/RNGS

http://www.americanlivewire.com/wp-content/uploads/2012/04/world-population-growth-and-forecast.gif

Figure 10.1 | World grain production and yield, 1961–2009. Source: Worldwatch Institute (2011: 56).

From: Dearden and Mitchell (2012)

The Green Revolution

- Combination of inputs or agricultural techniques that has increased food production per unit area (includes the introduction of higher-yield seeds and a reliance on auxiliary energy flows – i.e., fertilizer)
- The development and commercialization of higheryielding seeds through hybridization led to significant grain yields throughout the world
- Hybridization is the crossbreeding of two varieties or species of plants and animals
- Without the GR, many more people in the world would be suffering chronic food shortages

Dramatic rise in use of fertilizers in Canada

- Western Canada, a five-fold increase 1970 to 2000;
- Rates of application (kg per hectare) in Canada (see table) still lower than 2000 values for US (103.4); Australia (151.7); and Japan (301.0);

	1970	1980	1990	2000
Canada	18.4	42.4	45.1	54.2
	kg/ha	kg/ha	kg/ha	kg/ha

Competition for a limited land resource

- Encroachment of cities, suburbs, on productive rural landscapes or valuable forest
- Food versus Fuel production (Biofuels)

Photo credits: *Alternatives Journal* Vol. 34 Issue 3, 2008

Only 0.5% of it (Canada's land base) is Class 1. The Central Ontario Zone is fortunate to contain a significant portion of this very limited resource. Source: www.neptis.org

Agricultural Land Lost (Region of Hamilton Wentworth, 1993 to 2003)

Number of Hectares of Agricultural Land Lost Due to Official Plan Amendments 50.00 6.07 0.00 **Hectares of Agricultural** -17 -50.00 -28.5 Land Redesignated -4.76 -4.31 44.12 -100.00 -81.8 -102.74 -125.00-150.00 -200.00 -210 -250.00 -300.00 -350.00 Hectares Lost Hectares Gained -331 -400.00 1994 2002 2003 1993 1995 1996 1997 1998 1999 2000 2001 Target: Year

No loss of land. A decrease in the amount of land removed from agricultural designation is a positive step.

BC's Agricultural Land Reserve (ALR)

ALR

- Established by Dave
 Barrett (BC Premier early 1970s)
- Lack of (or waning of)
 protection for agricultural land (recent BC govts)
- Not all provinces have an ALR;
- QC: Agric. Protection Act
 □ (1978 →)
- \Box ON: Green Belt (2005 \rightarrow)

Quebec Agricultural Protection Act

- Cropland <2% of Quebec's land base</p>
- Much of it concentrated around the Province's six largest urban centres; thus face land use pressure for use other than agricultural
- Originally passed in 1978

© Éditeur officiel du Québec

Updated to 1 January 2014 This document has official status.

chapter P-41.1

AN ACT RESPECTING THE PRESERVATION OF AGRICULTURAL LAND AND AGRICULTURAL ACTIVITIES

http://www2.publicationsduquebec.gouv.qc.ca/dynamicSearch/telecharge.php?typ e=2&file=/P_41_1/P41_1_A.html

Ontario Green Belt (Greater Golden Horseshoe)

- Created 2005
- Includes: Oak Ridges Moraine; Niagara Escarpment; and other valuable agricultural lands

The Biofuel Revolution

Biofuel production has become more feasible in light of the rising cost of crude oil and the availability of improved processing technologies

<u>Biofuels</u> are derived from plants and other organic material; appear to have great potential to help curb GG emissions

The Biofuel Revolution

Advantages of biofuel:

- a fraction of the pollutants of traditional petroleum-based fuels,
- reduce foreign oil dependency
- Iower fuel prices
- increase income for farmers
- provide new jobs

Critiques:

- inputs used to grow many of the crops used for biofuels
- More profitable biofuel production removes land from food production
- Iarge-scale biofuel production can threaten biodiversity

Agriculture's Impact on the Global Landscape

- A variety of impacts associated with the development of agriculture and modern farming systems:
 - Humans ... the major influence on species distribution
 - Iarge areas of monoculture cropping
 - Monoculture cropping is the cultivation of one plant species over a large area, which leaves the crop highly susceptible to disease and insects, especially when all of the individual plants are genetically identical
 - Genetically-modified organisms (GMO) dramatic growth since 1995 (post Rio'92); Canada a lead player

Global area of transgenic crops

Figure 10.3 | Global area of biotech crops, industrial and developing countries (million hectares). *Source: James (2010).*

Box 10.4 (GMOs, course text) (p.341)

- Several areas of uncertainty remain with use of GMOs:
- Pleiotropic effects: unexpected side effect suffered by target organism (Q: is there an effect when U Guelph scientists engineer a pig that produces feces 20-50 times less Phosphorus?)
- Environmental effects: impacts on natural processes (e.g., pollination; reproduction; biogeochemical cycles or unintended "gene flow" to other organisms)
- Unintentional spread: from transgenic crops to lands where they are not intended to grow (Q: potential contamination of organic farmers)

Other impacts associated with modern agriculture

- □ Need for irrigation systems (→large-scale water diversions) resulting in changes in groundwater, soil characteristics, precipitation patterns, and water quality
- Soils are changed chemically and physically, while natural food chains are truncated
- Processes of Natural succession are altered or surpressed in agricultural landscapes ;
- A greater number of domesticated herbivores compared to natural herbivores
- The industrial system of livestock production directly affects land, air, water, and biodiversity through the emission of animal waste, use of fossil fuels, and substitution of animal genetic resources

To summarize ... issues with our Agricultural Systems

- □ High energy and capital intensive
- Globally-integrated
- Increasingly economically-consolidated
- Environmental Degradation and Economic Disaster for:
 - Family Farms
 - Community Processes
 - Downstream Businesses
- "People have become disconnected from their source of sustenance" ... is this a problem?

Source: (Feenstra 2002)

To summarize ... issues with our Food Systems

- Food is our fundamental input, and ... as the saying goes ... "You are what you eat"
- Food quality is degrading (genetically-altered, laced with chemicals, overly processed, ...)
 - Q?? Need we be concerned about potential long-term health implications ...
- □ Food travels immense distances to reach us (average product in a US supermarket travels 2000 km between production and point of consumption) → enormous energy demands !!

Weighted Average Source Distance (WASD)

Produce Type	Locally grown	Conventional Source Estimation
	WASD (miles)	WASD (miles)
Apples	61	1,726
Beans	65	1,313
Broccoli	20	1,846
Cabbage	50	719
Carrots	27	1,838
Corn, Sweet	20	1,426
Garlie	31	1,811
Lettuce	43	1,823
Onions	35	1,759
Peppers	44	1,589
Potatoes	75	1,155
Pumpkins	41	311
Spinach	36	1,815
Squash	52	1,277
Strawberries	56	1,830
Tomatoes	60	1,569
WASD - for all produce	56	1,494
Sum of all WASDs	716	25,301

Table 1. Comparison of local versus conventional source WASD (food miles) for produce

From: Pirog and Benjamin (2003, 2005) – study on the Food Odometer done for Iowa

Troubling Points about Sustainable Agriculture

- In cold climates like Thunder Bay, we are reliant on distal sources like Florida, California, S. Ontario ...
- Precious local farmland continues to be lost to residential and development (e.g., California, southern Ontario)

Google Earth (2010)

Looking Ahead to the Mid-term Exam

Thursday, February 13th, 2014

- Type of Questions (multiple choice, map literacy question)
- Content (to be discussed on Thursday, February 6th)

Chpt 15 (portion on `global perspectives`)

Chpt 7 (climate change)

Chpt 8 (oceans and fisheries)

Chpt 9 (forests)

Chpt 10 (agriculture, up to and including lecture 2-10 only, Feb 6th)

Example Questions (Midterm) choose the best answer ...

- 1. How many terrestrial ecozones does Canada have?
 - a) 15
 - b) 5
 - c) 10
 - d) 20
- 2. The warmest average temperatures in Canada are found in which ecozone?
 - a) Pacific Maritime
 - b) Atlantic Maritime
 - c) Montane Cordillera
 - d) Boreal Cordillera
- 3. What is the falldown effect?
 - a) The impact of falling trees on local wildlife
 - b) The drop in timber volume between old growth and second growth forests
 - c) The reduction in age at maturity of harvested species
 - d) None of the above

Looking Ahead to the next lecture

Read ahead (Chpt. 10, 347-364, Agriculture)

"Trends in Canadian agriculture and related environmental challenges."

 Dearden, P and Mitchell, B. 2012. <u>Environmental Change and Challenge</u>, Fourth Edition, Don Mills, Ontario: Oxford University Press {Chapter 10: 'Agriculture'}