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Abstract: Remote sensing Vegetation Indices (VIs) are simple, effective, and widely used methods
for quantitative and qualitative analysis of vegetation cover, vigor, and growth dynamics. This
study developed and assessed a new vegetation index (VI) using Cyan, Orange, and Near Infrared
(NIR) bands to assess Soybean growth dynamics. The study was conducted at Lakehead University
Agriculture Research Station, Thunder Bay, Canada, over four reproductive stages of Soybean growth
(R4–R7). Spectral profiles were created for each stage, and the correlation between each spectral
band at different stages was tested. There was no linear correlation between different bands except
the correlation between the Cyan and Orange bands at R5 and R6 stages. Existing VIs have also
been explored using approximately similar band combinations. Based on this analysis, three VIs
were proposed for this new camera, and their behavior at different stages was evaluated using Leaf
Area Index (LAI). Cyan and Orange spectral values were relatively high in the first and last growing
seasons, while NIR values increased dramatically in the mid-growing seasons and decreased in
the last stage. VINIR,O,C index showed the best results for mid-growing seasons (correlation with
LAI = 0.39 for R5 and R6). VIC,O index showed a high level of details visually (leaves and background)
for R4 and R7 than the other indices and correlated highly with LAI (0.48 and −0.5, respectively).
Overall, the study provided new VIs that can be used to effectively analyze Soybean growth dynamics,
with different VIs showing reliability over different growing stages.

Keywords: cyan; orange; near infrared; soybean; leaf area index (LAI); vegetation indices

1. Introduction

Several natural and anthropogenic factors, such as irrigation, nutrition, sunlight, and
temperature, affect vegetation health dynamics [1]. Lack or excess of those variables leads
to visible signs on vegetation or their growth dynamics, resulting in reduced yield or
poor-quality harvest. According to the precision agronomy concept, good management
and fewer resources can deliver better results, improving the crop’s health and yield [2].
Usually, farmers use their traditional knowledge, visual greenness observations, and
empiric methods to determine plant health, ultimately making management decisions to
protect their cultivations. The green color of a plant is an indicator of its level of chlorophyll
which absorbs sunlight for the photosynthesis process [3]. Therefore, leaf chlorophyll can
be used to estimate leaf photosynthetic capacity and, thus, vegetation health because of its
close relationship with leaf nitrogen content that affects vegetation growth dynamics [4,5].
The procedures commonly used to determine leaf chlorophyll are destructive chemical
analysis methods that involve the extraction of chlorophyll from leaf matter with organic
solvents, followed by a spectrophotometric assay of chlorophyll [6–8]. However, this
approach is time-consuming and expensive. Recently, several remote sensing approaches
(indirect) were introduced to estimate vegetation health [9]. These remotely sensed methods
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are non-destructive, fast, and efficient. Vegetation health or vigor can be indirectly observed
by using vegetation indices (VIs) derived from remotely sensed images [10]. Another
variable used to measure health is the Leaf Area Index (LAI), the ratio of leaf area to
ground area, typically reported as meters per square meter, a commonly used biophysical
characteristic of vegetation [11]. It was also determined that LAI could be related to yield,
another indicator of vegetation health, following the idea that healthy plants will have
greater yield results than unhealthy plants [11].

1.1. Remote Sensing for Assessing Vegetation Health

Remote sensing of vegetation health monitoring provides time, cost-effective, and re-
peatable recordings and evaluations of status, stress, disturbances, and resource limitations
over the short to long term for local and global vegetation monitoring [12,13]. The broad
wavelength region of 400–700 nm is described as the most active region for leaf pigments
or chlorophyll [14]. Based on the healthy vegetation spectral profile, healthy leaf pigments
show higher reflectance values at the electromagnetic spectrum’s green and Near Infrared
(NIR) regions [15,16]. Additionally, the Red Edge Region is the best remote sensing region
descriptor of chlorophyll concentration (680–750 nm) [4].

A widely used remote sensing approach for health monitoring is using Vegetation
Indices (VIs) derived from different band combinations to detect vegetation changes over
time. Mathematical expressions of VIs can be selected to show how different plant compo-
nents reflect the amount of electromagnetic energy. Therefore, VIs provides quantitative
measures of vegetation health. This approach is time and cost-effective, reliable, and quickly
covers large areas. The existing mathematical formulas for VIs were developed considering
the healthy vegetation spectral profile and thus provide reasonable measures for vegetation
dynamics [17]. Several studies used LAI, which is also a parameter for global and regional
models of the biosphere/atmosphere exchange of carbon dioxide and water vapor, light
interception, and other leaf functions and processes (photosynthesis) to predict chlorophyll
content using remote sensing techniques [4,5,18–20]. For instance, the spatial distribution
of mangrove canopy chlorophyll content can be mapped by using laboratory-measured
canopy chlorophyll concentrations, LAI, and remotely sensed images [20].

Existing Vegetation Indices

Many of the existing VIs use the NIR and red spectral bands in different mathematical
combinations to express quantitative and qualitative features; for example, one of the
widely used VIs is the Normalized Difference Vegetation Index (NDVI); this index indicates
the structure and greenness of vegetation using NIR and red spectral bands as expressed in
Table 1. Carotenoid Reflectance Index 1 (CRI1), which ranges from one to eleven for green
vegetation, is commonly used to assess stressed vegetation [21].

Table 1. Selected Vegetation Indices that are approximately equal to the spectral bands used in
this study.

Vegetation Index Mathematical Expression

Difference Vegetation Index (DVI) [22] NIR − Red
Ratio Vegetation Index (RVI) [23] Red/NIR

Normalized Difference Vegetation Index (NDVI) [24] (NIR − Red)/(NIR + Red)
Carotenoid Reflectance Index 1 (CRI1) [21] 1/p510 − 1/p550

Soil Adjusted Vegetation Index
(SAVI) [25] ((NIR − Red)/((NIR + Red) + L))× (1 + L)

In the visible spectral range (approximately 380–700 nm), the blue, green, and red
bands are the most used bands. For example, two perpendicular vegetation index (PVI)
models were applied, the PVI and PVI6, that yielded significant coefficients of determi-
nation (R2) of 0.522 and 0.659, respectively, with LAI [22]. It is possible to use the visible
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spectral range, specifically the green region, to sense the chlorophyll concentration in order
to measure the rate of photosynthesis and to monitor plant stress [26].

With the development of technology, new sensors with different spectral band combi-
nations than the traditional blue, green, red, and NIR are being introduced to the market.
For instance, Mapir Survey 3W OCN camera is sensitive to the Cyan (480–520 nm), Orange
(585–620 nm), and NIR (780–870 nm) [2] (Table 2). According to the OCN camera specifica-
tions, the OCN camera is the improved version of the RGN camera, which is sensitive to
green (530–570 nm), red (640–680 nm), and NIR (820–880 nm) bands of the electromagnetic
spectrum by increasing the contrast within vegetation and reducing soil noise [27,28]. The
OCN camera is more sensitive to a relatively wide NIR region than the RGN camera.
However, there is no in-depth analysis of spectral profiles of different bands or VIs for
OCN camera band combinations as this camera is relatively new. Therefore, this study
aimed to develop a new VI for analyzing Soybean plant growth dynamics using the OCN
camera, which is sensitive to the electromagnetic spectrum’s Cyan, Orange, and NIR bands.
The specific objectives are to (1) develop a spectral profile for Soybean’s growing stages;
(2) compare the performance of different VIs at different growing seasons; (3) validate the
performance using Canopy LAI; and (4) propose the best-fitted VI for Cyan, Orange and
NIR bands.

Table 2. Bandwidth (nm) for Mapir Survey 3 Wide-angle RGN and OCN cameras.

Mapir Survey 3 (Wide Angle)

OCN Camera RGN Camera

Cyan Orange NIR Green Red NIR
460–520 585–645 780–870 530–570 640–680 820–880

2. Materials and Methods
2.1. Data and Study Area

The study was conducted at the Lakehead University Agriculture Research Station
(LUARS), Thunder Bay, Ontario, Canada (48.3051◦N, 89.3881◦W). Several Soybean species
were tested on a large area (87 m × 32 m area), and the study selected two locations to set
up cameras (Figure 1).

A massive increase in Soybean production and international trade during the past
60 years has been a significant cause of the world’s average human life span increasing
from 46.6 to 69.3 years during that time period [29]. An increase in dietary protein has been
especially beneficial in developing countries where diets have historically been too low in
protein [29]. In Canada, Soybean is a highly produced crop, with over 1,260,400 seeded
hectares in Ontario [30].

Remote Sensing DataImage acquisition started on 26 July 2022 and finished on
19 September 2022: This study followed the regional reproductive stage identification details
and divided the period into four reproductive stages, hereafter denoted as “R4–R7” [31,32];
Reproductive Stage 8 (R8) was the harvesting stage.

The study used two Mapir Survey 3W aerial cameras [33]. One is sensitive to Red
(660 nm), Green (550 nm), and NIR (850 nm) bands (hereafter denoted as “RGN camera”),
and the other is sensitive to Cyan (490 nm), Orange (615 nm), and NIR (808 nm) bands
(hereafter denoted as “OCN camera”); Table 2 explains the spectral range of these cameras.
Noticeably, the NIR regions of the cameras are different (Table 2). Two Soybean plots
were selected for analysis based on their plant density. Station 01 had sparsely distributed
Soybean plants, and two cameras (OCN and RGN) were set up at a 90◦ angle (looking
straight down) (Figure 2). Station 02 had dense Soybean plants and arranged two cameras
at a 90◦ angle (OCN camera) and a 45◦ angle (RGN camera) (Figure 2). Images were
captured every 30 min daily from 7.00 a.m. to 5.30 p.m. during the season. Images
were downloaded once a month and sorted into the different reproductive stages and
times of the day morning (7:00 a.m. to 11:00 a.m.), midday (11:00 a.m. to 2:00 p.m.), and
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afternoon (2:00 p.m. to 5:00 p.m.). Then, they were calibrated (converted DN values to
spectral reflectance values) using the MAPIR Camera Control (MCC) Software version
20221111 [34] for further analysis using R Studio [35].

Figure 1. A map of the Lakehead University Agricultural Research Station. The Soybean plot and the
camera stations were indicated using a black polygon outline and blue/red points, respectively.

2.2. Spectral Signatures

To derive spectral profiles for each stage using an OCN camera, approximately 30 midday
images were selected for each stage (R4–R7); a random set of points were selected inside
Soybean leaves and extracted corresponding spectral reflectance values for each band.
There were approximately 1000 data points for each stage. Exploratory Data Analysis
(EDA) was done based on scatter plots (index plots), box plots, histograms, and Q-Q plots.
Based on EDA, outliers were removed, and a set of spectral reflectance values for each
stage was prepared (1000 points per each stage). The spectral values were plotted against
each wavelength, and the mean spectral profiles were extracted for each stage (R4–R7).

2.3. Vegetation Indices

To date, no unified mathematical expression defines all VIs due to the complexity of
different light spectra combinations, instrumentation, platforms, and spectral and spatial
resolutions used [10]. Table 1 shows selected VIs that use approximately the same spectral
bands as one of the cameras used for this study.

To develop the new VI, several existing band combinations (mathematical expressions)
were initially tested (Table 3). A set of random points were selected inside Soybean leaves,
and corresponding VI values were extracted. This was repeated for all images and stages.
The correlation between index values and spectral reflectance values was analyzed. Based
on these results, three options were proposed as new VIs for OCN cameras (Table 4).
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Figure 2. Camera Station Setups at different angles; cameras were operated using the power generated
from a battery and a solar panel at each station. Raspberry Pi micro-computers were used to automate
the image acquisition process.

Table 3. Tested Vegetation Indices based on existing Vegetation Indices.

Original Vegetation Index Symbology Proposed Vegetation Index

Difference Vegetation Index (DVI) dvi_on NIR − Orange
Ratio Vegetation Index (RVI) sr_on Orange/NIR
Ratio Vegetation Index (RVI) sr_cn Cyan/NIR

Normalized Difference Vegetation Index (NDVI) ndvi_on (NIR − Orange)/(NIR + Orange)
Adjusted Vegetation Index (SAVI) savi_on (1.5 × (NIR − Orange))/(NIR + Orange + 0.5)

Table 4. New Vegetation Indices.

Symbology Mathematical Expression

VINIR,O,C
(

NIR − Orange
NIR + Orange

)
×

(
NIR

Cyan

)
VINIR,O,O

(
NIR − Orange
NIR + Orange

)
×

(
NIR

Orange

)
VIC,O

(
Cyan

Orange

)
2.4. Leaf Area Index

LAI was calculated using an indirect method introduced in a study conducted in the
North American region (Nebraska), which indicated successful results [36]. Gaso et al. [37]
also effectively used LAI in their study of Soybean yield variability. We selected Equation (1)
with a Root Mean Squared Error (RMSE) of 0.48 and a coefficient of determination (R2) of
0.90 to calculate the LAI of our Soybean plants.

LAI = log0.37

(
NDVI−0.526 − 1.03

)
(1)
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NDVI was calculated using images from the RGN camera. Once LAI was calculated,
values were extracted for the same set of random points (as used earlier for VIs). EDA was
performed to remove outliers and understand the data distribution.

2.5. Proposed Indices and Their Validation

The new VIs were calculated for each stage; corresponding values were extracted for
the same set of random points. EDA was completed, and outliers were removed. Since
data were not normally distributed at all stages, the Kruskal-Wallis test [38] was used to
determine if there were significant differences between the new VIs and LAI. After that,
Pearson Correlation Coefficient (r) was calculated between the new VIs and LAI to evaluate
how representative they are at different stages [39].

3. Results
3.1. Spectral Profiles

According to Figure 3 (R4 stage), there were outliers in the Cyan and Orange bands.
The index plots are scatterplots with the spectral value of the points (y-axis) appearing
from left to right in the order they are available in the data file. So the scatter plot shows
spectral values from left to right according to each stage’s ascending order of date and time.
However, data were not trended, and the degree of scatter was consistent from left to right
(see scatter plots). NIR values were approximately normally distributed without outliers.
The theoretical quantile plots were used to determine how these points deviated from a
theoretical normal distribution and visually assess whether the difference was significant.
Once outliers were removed, these deviations were insignificant for this stage. The spectral
profiles are shown in the upper right graph. Grey lines represent data points, and the black
line represents the average spectral profile for the R4 stage. The Orange band value was
slightly lower than NIR values and higher than the Cyan value. However, NIR values
were seen increasing at later dates. Figure 4 shows the R5 stage. All bands had outliers,
and the NIR scatter plot showed a positive trend (data ranging from 0.6 to 1). Data points
significantly deviated from theoretical normality (theoretical quantile plots and histograms).
Once outliers were removed, the average spectral profile indicated dramatically increased
NIR and low Cyan and Orange values. Almost the same spectral behaviors were evident in
the R6 stage (Figure 5). The average spectral profile of R6 was similar to R5. According
to Figure 6, the data for the R7 stage had few outliers and had an average spectral profile
more similar to R4 than either R5 or R6, with a NIR value range of 0.2 to 0.8.

Table 5 shows the mean and Standard Deviation (SD) of band values at each stage.
The Orange band got higher mean values in R4 (0.28) and R7 (0.24) stages with lower mean
values in R5 (0.13) and R6 (0.09). NIR values were changed from 0.38, 0.91, and 0.88 to 0.42
for R4–R7, respectively (Table 5).

Table 5. OCN bands Mean and Standard Deviation among Reproductive Stages.

Band
R4 R5 R6 R7

Mean SD Mean SD Mean SD Mean SD

Cyan 0.08 0.06 0.08 0.04 0.06 0.03 0.04 0.04
Orange 0.28 0.09 0.13 0.05 0.09 0.04 0.24 0.14

NIR 0.38 0.22 0.91 0.12 0.88 0.13 0.42 0.20
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Figure 3. The average OCN spectral profile and Exploratory Data Analysis for the R4 stage. The
upper left shows an example of the R4 stage. The upper right is the spectral profiles of 1000 points
from the OCN camera (grey lines) and the average spectral profile of the reproductive stage (black
line). The lower part of the image includes exploratory data analysis results for each band (Scatter
plot (index plot); box plot; histogram, and theoretical quantiles, respectively).
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Figure 4. The average OCN spectral profile and Exploratory Data Analysis for the R5 stage. The
upper left shows an example of the R5 stage. The upper right is the spectral profiles of 1000 points
from the OCN camera (grey lines) and the average spectral profile of the reproductive stage (black
line). The lower part of the image includes exploratory data analysis results for each band (Scatter
plot (index plot); box plot; histogram, and theoretical quantiles, respectively).
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Figure 5. The average OCN spectral profile and Exploratory Data Analysis for the R6 stage. The
upper left shows an example of the R6 stage. The upper right is the spectral profiles of 1000 points
from the OCN camera (grey lines) and the average spectral profile of the reproductive stage (black
line). The lower part of the image includes exploratory data analysis results for each band (Scatter
plot (index plot); box plot; histogram, and theoretical quantiles, respectively).
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Figure 6. The average OCN spectral profile and Exploratory Data Analysis for the R7 stage. The
upper left shows an example of the R7 stage. The upper right is the spectral profiles of 1000 points
from the OCN camera (grey lines) and the average spectral profile of the reproductive stage (black
line). The lower part of the image includes exploratory data analysis results for each band (Scatter
plot (index plot); box plot; histogram, and theoretical quantiles, respectively).
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3.2. Proposed Indices
3.2.1. Correlation between Different Spectral Bands and VIs (OCN Camera)

Figures 7–10 show the correlation between different vegetation indices and spectral
bands of the OCN camera. Within the bands themselves, the scatterplots didn’t show
linear correlations. However, in R5 and R6 stages, Cyan and Orange bands showed a
statistically significant positive linear correlation (0.973) (Figures 8 and 9). There is a non-
linear, moderate negative correlation (−0.387) in R4 and R7. In the R4 stage, there is a
non-linear, negative correlation between Orange and NIR bands (−0.206) (Figure 7) and a
strong positive relation between Cyan and NIR bands. Additionally, the index “ndvi_on”
presents statistically significant (negative) correlations between indices “sr_cn” and “sr_on”.
These patterns are almost similar at the R7 stage (Figure 10). In R5 and R6 stages, there
is a high correlation between “ndvi_on” and the indices “sr_cn” and “sr_on” correlation
(Figures 8 and 9).

Referring to Figures 7–10, a relationship between different bands or two indices with a
high degree of correlation can be explained with the following generic equation:

VI1 α VI2 (2)

where VI1&2 vegetation indices are derived from the OCN camera using existing mathe-
matical formulas.

According to Figures 7–10 and Equation (2), there were no strong linear relationships
between different bands or band combinations. Hence, the mathematical expressions
proposed in Table 4 were polynomial (quadratic) equations. For example, Figure 7 shows
quadratic relation with NIR for the other two bands. For example, there was a statistically
negative relation (r = −0.991) between ndvi_on and sr_on, and it was the basis for the
proposed VINIR,O,C index.

Figure 7. Correlations between different combinations of spectral bands (Cyan, Orange, and Near-
Infrared) and Vegetation Indices derived from the OCN camera at the R4 stage. Symbol * represents
the level of statistical significance of correlation. Points are part of scatterplots with a fitted line (blue).
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Figure 8. Correlations between different combinations of spectral bands (Cyan, Orange, and Near
Infrared) and Vegetation Indices derived from the OCN camera at the R5 stage. Symbol * represents
the level of statistical significance of correlation. Points are part of scatterplots with a fitted line (blue).

Figure 9. Correlations between different combinations of spectral bands (Cyan, Orange, and Near
Infrared) and Vegetation Indices derived from OCN camera at the R6 stage. Symbol * represents the
level of statistical significance of correlation. Points are part of scatterplots with a fitted line (blue).
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Figure 10. Correlations between different combinations of spectral bands (Cyan, Orange, and Near
Infrared) and Vegetation Indices derived from OCN camera at the R7 stage. Symbol * represents the
level of statistical significance of correlation. Points are part of scatterplots with a fitted line (blue).

3.2.2. Correlation between LAI and New VIs

The New VIs were tested over the growing season and assessed the reliability of them
based on the LAI of Soybean plants. The Kruskal Wallis test results for LAI and different
indices values were not statistically significant at the 95% confidence level (p-value > 0.05),
indicating no significant difference between LAI values and new VIs at each stage.

The correlation between the new VIs and LAI is summarized in Table 6. VINIR,O,C
showed a higher correlation for middle stages (R5 and R6), slightly better than VINIR,O,O.
The index: VIC,O showed a moderate positive correlation for R4 and a moderate negative
correlation for R7 (Table 6). Figure 11 shows examples of the new VIs for each stage.
Although R5 and R6 had a linear correlation between Cyan and Orange bands, the VIC,O
didn’t differentiate Soybean leaves and the background properly (Figure 11, rows 2 and 3).
This is also evident in the correlation between LAI and indices (Table 6). However, VIC,O
showed a visually high level of details (leaves and background) for R4 and R7 than the other
indices. VINIR,O,C in R5 and R6 showed the same, where more details can be appreciated
within the leaves and a clear demarcation between leaves and the background.

Table 6. Pearson Correlation Coefficient (r) results between the New Vegetation Indexes and LAI for
each stage.

VI
Stage

R4 R5 R6 R7

VINIR,O,C 0.44 0.39 0.39 0.2
VINIR,O,O 0.29 0.37 0.38 −0.3

VIC,O 0.48 −0.27 0.28 −0.5
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Figure 11. New Vegetation Indices were shown in different reproductive stages. VIC,O shows visually
appealing results for R4 and R7, while VINIR,O,C got better results for R5 and R6.

4. Discussion

Photographs of each growing stage in Figures 3–6 show Soybean maturity levels. For
example, R4 had pre-matured plants (early stage), and R7 was in the late season showing
yellowish plants. It is also important to note that images from R4 and R7 stages, where
plants were sparsely distributed, have soil in the background which must be separated
from the leaf area in the analysis. In R5 and R6, plants were fully grown, and no soil was
visible in the camera’s field of view.

4.1. Spectral Profiles

According to the data analysis, it can be confirmed that the generated spectral profiles
followed the standard healthy vegetation spectral profile pattern. For example, the average
Cyan values were 0.08 (R4 and R5), changed from 0.08 to 0.06 (R5 to R6), and further
reduced to 0.04 in R7 (Table 5). In contrast, Orange spectral values were reduced from
R4 to R5 and further in R6 and then increased from R6 to R7. When plants are maturing,
chlorophyll and carotenoid concentration will change, and thus the absorption near the red
region varies [1–3]. Results showed a low NIR reflectance for R4 and R7, stages where leaf
pigments (leaf chlorophyll and carotenoids) are expected to be lower than in other stages.
High NIR reflectance in the middle stages (R5–R6) indicates fully grown Soybean with
high leaf chlorophyll concentrations [1–3]. Hence, these results coincided with the already
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developed healthy vegetation spectral profile [15,16]. Although Kokaly et al. [14] stated the
wavelength region of 400–700 nm is sensitive to changes in leaf pigments and thus the leaf
chlorophyll content, the NIR wavelength region of the OCN camera (780–870 nm) is outside
the specified ideal range. This study also indicated meaningful variations of NIR within
growing stages. The NIR spectral values in the mid and later stages showed a positive trend
during EDA until the latter part of the R7 stage, which indicates a negative trend. A study
comparing actual leaf chlorophyll concentration and spectral values is recommended.

4.2. Proposed Indices

No linear relations existed between individual bands except Cyan and Orange bands in
the mid-seasons (R5 and R6). This can be explained in terms of chlorophyll and carotenoid
concentration variations over the growing season and their effect on sunlight absorption
and reflection. For example, when plants mature, chlorophyll (greenness) increases and thus
absorption in the near the red region and increasing reflectance in green (near Cyan) [15,16,40].
On the other hand, as specified in Gutman et al. [41] and other studies, NIR and red didn’t
show a linear relation. As noted, R5 and R6 had similar patterns as did R4 and R7. A
different level of exposure to the soil background might contribute here. The existing
vegetation indices derived using the OCN camera, according to Table 3, were based on
linear relations of different band combinations. Hence, the new indices were derived by
analyzing the correlation between those indices. For example, “ndvi_on” and “sr_cn” had
statistically significant high negative relation (−0.9), and it was the basis for VINIR,O,C index.

Visual analysis of images derived from the new indices illustrates different levels
of detail in the vegetation depending on the index and growth stage (Figure 11). This is
compatible with the correlation coefficients obtained in Table 6. For instance, VINIR,O,C
showed good results for R5 and R6, which is clearly shown in Figure 11. Since there was a
similar correlation between Cyan and Orange bands in R4 and R7, the new index: VIC,O
showed good results. Although there was a strong linear relationship between Cyan and
Orange at R5 and R6 stages, the ratio of these two bands didn’t differentiate Soybean
leaves well. That indicates their low reflectance values in these stages. Once these two
bands were combined with the NIR band using a polynomial equation, the results were
acceptable (Table 6).

LAI is a key biophysical variable used to measure crop growth and productivity [11].
Hence, we used LAI to assess whether the details of the Soybean plot represented by
the proposed indices were the same as the distribution of LAI. The statistical analysis
Kruskal-Wallis test didn’t show a significant difference between index values and LAI.

Due to time limitations, we were not able to test the spectral variations over small
time spans, so the data, which was collected multiple times each day were, aggregated
into growing stages. It would be beneficial to analyze the same set of data as time series
to see the spectral variations over time. In the future, it would recommend comparing
the vegetation indices to the leaf chlorophyll content to assess the performance of the
proposed indices. Additionally, testing the proposed indices over another growing season
or including a lab chemical analysis, perhaps for nitrogen variations, would represent an
important accuracy assessment.

4.3. Practical Applications of Results

The study developed spectral profiles and VIs for different Soybean growth stages. For
example, in a practical situation, field spectral profiles can be compared with this study’s
generated spectral profile and make informed decisions regarding the Soybean growth
patterns, even at different reproductive stages. The proposed VIs are useful, especially in
analyzing growth dynamics over a large area; for instance, this camera can be attached
to a Remotely Piloted Aircraft System (RPAS or drone), capture images and calculate the
proposed VIs for large Soybean fields to assess the growth patterns over time.
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5. Conclusions

Using remote sensing technology, we developed new vegetation indices (VIs) from
the Mapir Survey 3W OCN camera that includes the Cyan, Orange, and NIR bands from
the electromagnetic spectrum on two adjustable stations attached to Raspberry Pi units and
solar panels. This approach provides a cost-effective and efficient method for precise crop
management. We analyzed spectral information from four Soybean reproductive stages
(R4–R7) at LUARS, conducted EDA, and removed outliers. We then created and analyzed
spectral profiles for each stage.

Our analysis revealed that the spectral profiles obtained for each stage were consistent
with what is expected from healthy vegetation spectral profile studies. The Cyan values
ranged from 0.08 to 0.09 (R4 to R5) and 0.05 to 0.09 (R5 to R6) and remained the same in R7.
The Orange spectral values decreased from R4 to R5 and increased from R6 to R7, while
the NIR values were higher in the middle stages and lower in R4 and R7 stages, where
chlorophyll is expected to be in a lower concentration. We tested correlations between each
spectral band at different stages and found a positive linear relation between Cyan and
Orange reflectance in R5 and R6 stages, while all other combinations were non-linear.

We then tested various existing VIs that utilized similar band combinations and found
that combining Cyan and Orange with NIR in a polynomial equation delivered strong
correlations. Based on these findings, we proposed three VIs: VINIR,O,C, VINIR,O,O, and
VIC,O. We correlated these VIs against LAI values and obtained results of 0.39 for R4 and
R5, 0.48 for R6, and −0.5 for R7 (Table 6). Our analysis suggests that the best-fitted VI for
middle stages is VINIR,O,C = ((NIR − Orange)/(NIR + Orange)) × (NIR/Cyan), while the
best-fitted VI for R4 and R7 is VIo,c = Cyan/Orange.

Due to time limitations, we could not test the spectral variations over small periods.
Therefore, the data, which was collected multiple times each day, were aggregated into
growing stages. Analyzing the same data set as time series would be beneficial to appreciate
the spectral variations over time. It is also recommended to compare the vegetation indices
with the leaf chlorophyll content to assess the performance of the proposed indices. For
further research, it is advisable to conduct testing in another growing season and perform
laboratory chemical analyses such as nitrogen content.

In conclusion, our study demonstrates the utility of remote sensing technology in
developing a new VI for Soybean crop management. Our findings provide insights into the
spectral profiles of Soybeans at different reproductive stages and in different wavelengths,
offering new approaches for optimizing crop management.
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