EVOLUTION OF VERTEBRATES – LECTURE OUTLINE

January 6		Introduction
January 8	Unit 1	Vertebrate diversity and classification
January 13	Unit 2	Chordate/Vertebrate bauplan
January 15	Unit 3	Early vertebrates and agnathans
January 20	Unit 4	Gnathostome bauplan; Life in water
January 22	Unit 5	Early gnathostomes
January 27	Unit 6	Chondrichthyans
January 29	Unit 7	Major radiation of fishes: Osteichthyans
February 3	Unit 8	Tetrapod origins and the invasion of land
February 5	Unit 9	Extant amphibians: Lissamphibians
February 10	Unit 10	Evolution of amniotes; Anapsids
February 12		Midterm test (Units 1-8)
February 17/19		Study week
February 24	Unit 11	Lepidosaurs
February 26	Unit 12	Mesozoic archosaurs
March 3		
March 5	Unit 13	Evolution of birds
March 10	Unit 14	Avian flight
March 12	Unit 15	Avian ecology and behaviour
March 17		
March 19	Unit 16	Rise of mammals
March 24	Unit 17	Monotremes and marsupials
March 26	Unit 18	Eutherians
March 31		End of term test (Units 9-18)
April 2		No lecture

EVOLUTION OF VERTEBRATES – LAB OUTLINE

January 8		No lab
January 15	Lab 1	Integuments and skeletons
January 22		No lab
January 29	Lab 2	Aquatic locomotion
February 5		No lab
February 12	Lab 3	Feeding: Form and function
February 19		Study week
February 26	Lab 4	Terrestrial locomotion
March 5		No lab
March 12	Lab 5	Flight
March 19		No lab
March 26	Lab 6	Sensory systems
April 2		<u>Lab exam</u>

GENERAL INFORMATION AND MARKING SCHEME

Professor: Dr. Janice M. Hughes

Office: CB 4052; Telephone: 343-8280 Email: janice.hughes@lakeheadu.ca

Technologist: Don Barnes

Office: CB 3015A; Telephone: 343-8490 Email: don barnes@lakeheadu.ca

Suggested textbook: Pough, F.H., C, M, Janis, and J. B. Heiser. 2008.

Vertebrate Life, 8th edition. Prentice Hall.

Required resources: Hughes, J. M. The *Evolution of Vertebrates:*

Supplementary Notes and Lab Manual.

McGowan, C. T-rex To Go. Harper Collins.

Lab assignment 1	January 29	2%
Midterm lecture test	February 12	25%
Lab assignment 2	February 26	1%
Lab assignment 3	March 26	2%
Dinosaur Due	March 26	20%
End of term test	March 31	25%
Lab test	April 2	25%

Bonus points will be awarded for successful completion of a dinosaur. Students may make a "research" presentation with permission of the professor in lieu of dino; however, no bonus marks will be awarded. The dinosaur is due during the March 26th lab; presentation schedule (if necessary) to be announced. Late dinos receive no bonus marks, and per diem marks may be deducted. More information will be given in class.

Please note the following:

 Students taking this course will be required to observe and/or handle study skins, skeletons, and preserved specimens during the laboratory sessions. Those who are uncomfortable with these practices should not register in this course. 2. Specimens examined in the lab <u>may not</u> be available for viewing at other times, so complete your work during the scheduled lab time.

HELPFUL WEBSITES

Tree of Life Web Project

http://www.tolweb.org

- Link through branches on each phylogeny or use taxon search
- Many (but not all) pages contributed by foremost experts; references included
- Leading-edge phylogenies may not be the most widely accepted
- Good illustrations; some excellent reviews of phylogenetic relationships

The Paleontology Portal

http://www.paleoportal.org/

- Provided by the University of California Museum of Paleontology
- Well-written and researched
- Excellent information on fossils, ancient climates, and geology

University of Michigan Museum of Zoology Animal Diversity Web

http://animaldiversity.ummz.umich.edu/site/index.html

- Excellent site with many photographs, and quicktime movie and sound files
- Solid basis in classification; good information on specific taxa

Please remember, however, that many webpages are <u>not</u> peer-reviewed. This means that the information or opinions expressed in them may not have been evaluated by experts in the field; in other words, they may not be accurate. Furthermore, the author's viewpoints on systematics, and evolutionary origins and relationships may be controversial. University and museum webpages are usually the most reliable.

Please see the course webpage for more useful links.